Republic of Angola Ministry of Energy and Water Affairs

The Project for Power Development Master Plan in the Republic of Angola

Final Report

December 2018

Japan International Cooperation Agency (JICA)

Tokyo Electric Power Services Co., Ltd.(TEPSCO)

International Institute of Electric Power, Ltd.(IIEP)

[Table of Contents]

Chap	ter 1 Outline of the Survey	1-1
1.1	Background of Survey	1-1
1.2	Purpose of the Survey	1-1
	1.2.1 Purpose	1-1
	1.2.2 Implementing Organizations of the Partner Country	1-2
1.3	Activities	1-2
Chap	ter 2 Review of the Current Situation in the Power Sector	2-1
2.1	Location of Angola	2-1
2.2	Country overview	2-2
	2.2.1 Social situation	2-2
	2.2.2 Economic condition	2-2
2.3	Review of the current status of the power sector structure	2-4
	2.3.1 Electricity Sector Transformation Program (PTSE)	2-4
	2.3.2 Power sector organization after sector reform	2-4
2.4	Review of the current power demand and supply	2-10
	2.4.1 Demand status	2-10
	2.4.2 Power supply status	2-11
2.5	Review of cooperation by donors and activities by the private sector	2-12
	2.5.1 Cooperation by donors	2-12
	2.5.2 Activity by the private sector	2-12
2.6	Review of the Intended Nationally Determined Contributions (INDCs) relating to the power sector in Angola	2-13
2.7	Some issues faced by the Angola power sector	2-15
	2.7.1 Issues in term of the organization	2-15
	2.7.2 Issues related to electric power system	2-15
	2.7.3 Issues in terms of power policy	2-16
Chap	ter 3 Primary Energy Analysis for Power Development	3-1
3.1	General energy condition in Angola	3-1
	3.1.1 Primary energy flow analysis	3-1
3.2	The potential of primary energy	3-5
	3.2.1 Large hydropower	3-5
	3.2.2 Oil	3-8
	3.2.3 Natural gas	3-10
	3.2.4 Renewable energy	3-10
	3.2.5 Coal	3-15

3.3	Condition of energy supply facilities	
	3.3.1 Liquefied natural gas (LNG) plant	3-16
	3.3.2 Oil refinery plant	3-16
3.4	Price trends for each form of primary energy	
	3.4.1 Crude oil	3-18
	3.4.2 Natural gas	3-18
	3.4.3 Selected fuel price for formulating the "Optimal Generation Mix"	3-19
3.5	Items to Prepare to Promote Power Development	
	3.5.1 Options for Power Supply	
	3.5.2 Options for Fuel, and Fuel Characteristics	
	3.5.3 Setting of Thermal Power Generation Planning Scenarios and Selection of Fuel	3-21
	3.5.4 Facilities to Prepare for Power Development Promotion	
Chap	ter 4 Procedure for Formulating a Power Master Plan based on t Generation Mix ("The Best Mix")	
4.1	Basic policy for an optimal generation mix	4-1
4.2	Items to examine	
	4.2.1 Economic matters	4-1
	4.2.2 Supply reliability	4-4
	4.2.3 Energy security	4-6
	4.2.4 Environmental and social considerations	4-7
4.3	Flow for formulating a power development master plan	
Chap	ter 5 Power Demand Forecast	5-1
5.1	Power demand forecast in current plan and related data	
	5.1.1 Current power demand forecast	5-1
	5.1.2 Forecast of GDP and population growth	5-2
	5.1.3 Relevance and problems of the current power demand forecast	5-5
5.2	Power Demand Results and Regional Characteristics	
	5.2.1 Power Demand Results	5-6
	5.2.2 Regional characteristics of power demand	5-9
5.3	Power demand forecast up to 2040	
	5.3.1 Power demand forecasting methodology	5-10
	5.3.2 Annual maximum power demand forecast	5-10
	5.3.3 Daily load curve forecast	5-13
	5.3.4 Annual generated energy demand forecast	5-18
	5.3.5 Macro-evaluation of power demand forecast	5-19
Chap	ter 6 Optimization of the Generation Development Plan	6-1

6.1	Current situation of power generation facilities	6-1
	6.1.1 Existing power plants	6-1
	6.1.2 Performance of large hydropower stations	6-7
	6.1.3 Power stations under construction	6-8
6.2	Current power development plan	6-11
6.3	Preparation for a long-term power development plan by 2040	6-14
	6.3.1 Setting conditions for an economic evaluations study using PDPAT	6-14
	6.3.2 Selection of the generation type for use in development planning	6-16
	6.3.3 Basic conditions for optimization of development plan	6-18
6.4	The most economical power supply configuration in 2040	6-19
	6.4.1 Hydropower development plan	
	6.4.2 Relationship between LOLE and Reserve Capacity	
	6.4.3 Most economical power supply composition ratio by using PDPAT	6-21
6.5	Formulation of the power development plan	
	6.5.1 Power development plan (Draft) by 2040	6-22
	6.5.2 Impact of introducing renewable energy	6-24
	6.5.3 Power development plan with renewable energy (base plan)	6-25
	6.5.4 Greenhouse gas emission in the base case	6-29
6.6	Scenario case studies	
	6.6.1 Setting the scenario	6-30
	6.6.2 Delays in the development of the power stations	6-31
	6.6.3 Development location of CCGT	6-33
	6.6.4 Additional development of renewable energy	6-37
6.7	Recommended project list	6-40
Chap	ter 7 Study on optimization of the transmission system development pla	an 7-1
7.1	Current power system in Angola	7-1
7.2	Transmission system of the capital city Luanda	7-3
7.3	Power system enhancement plan by RNT	7-3
7.4	Characteristics of the main power system in Angola	7-5
	7.4.1 Voltage reference	7-5
7.5	Information gathering and analysis of the existing transmission facilities in Ango	ola7-6
	7.5.1 Outline	7-6
	7.5.2 The existing transmission lines	7-6
	7.5.3 The existing substations	7-11
7.6	Information gathering and analysis of the latest transmission development plan	7-13
	7.6.1 Existing development strategies and plans	7-13
	7.6.2 Analysis of the technical data and the latest cost in existing facilities	7-19

R	7.6.3 Analysis based on international interconnection with neighboring countries (D Republic of Congo, Namibia, Zambia)	
7.7	Transmission network development plan	7-25
	7.7.1 Policy	7-25
	7.7.2 Regional supply substation plan based on demand forecasts	7-26
	7.7.3 220 kV power transmission line plan based on the regional supply substation plan	7-29
	7.7.4 Transmission Development plan based on the Generation Development Plan	7-31
	7.7.5 400 kV main Transmission Line and Substation Plan based on electric power system	
	7.7.6 The future vision of the main power system	7-38
	7.7.7 Demand assumptions for the substations	7-38
	7.7.8 The transmission development plan for 2040	7-39
	7.7.9 The evaluation for the power system analysis	7-45
	7.7.10 Validity of distributed installation of CCGT	7-45
	7.7.11 Consideration for measures to reduce power transmission loss	7-46
	7.7.12 Annual plan for transmission development system	7-47
	7.7.13 Required volume of reactive power compensators	7-52
	7.7.14 Fault Current	7-53
	7.7.15 Summary of the power transmission system development plan up to 2040	7-54
Chap	oter 8 Review on Private Investment Environment	8-1
8.1	Report on private Investment	8-1
8.2	Review of the Private Investment Environment Report	
	8.2.1 Private investment environment in Angola	8-3
	8.2.2 Legal system in Angola	8-3
8.3	Interviews with Japanese companies	
	8.3.1 Interviews with Japanese Companies in Angola	8-4
8.4	New Private Investment Law	8-5
	8.4.1 New Private Investment Law (2015)	8-5
	8.4.2 Private power project in accordance with the New Private Investment Law	8-5
8.5	Summary and Bottlenecks	8-6
Chap	oter 9 Long-term Investment Plan	9-1
9.1	Premise for fundraising	9-1
9.2	Fundraising for investment	9-1
	9.2.1 ODA loan	9-1
	9.2.2 Typical Loan Conditions	9-4
9.3	Long-term Investment Plan	9-4
	9.3.1 Summary of the Long-term Investment Plan	9-4

	9.3.2 Long-Run Marginal Cost (LRMC)	9-10
	9.3.3 Recommendations on the Optimal Financial Strategy	9-15
Chapt	ter 10 Economic and Financial Analysis	10-1
10.1	Financial Analysis of RNT • PRODEL • ENDE	10-1
	10.1.1 RNT	10-1
	10.1.2 PRODEL	10-4
	10.1.3 ENDE	
10.2	Analysis of Financial Soundness and Sustainability	
	10.2.1 Analysis of a unit revenue price per kWh	
	10.2.2 Bill Collection	
	10.2.3 Financial Soundness	10-10
10.3	Review of the Financial Condition of PRODEL, RNT and ENDE	10-11
	10.3.1 Tariff	10-11
	10.3.2 Cost Structure	10-11
	10.3.3Borrowing	10-11
	10.3.4 Regulation on the fiscal budget and the tariff	10-11
	10.3.5 Some Financial Issues to be considered	10-12
	10.3.6 Other issues	10-12
Chapt	ter 11 Environmental and Social Considerations	11-1
11.1	Outline of the Strategic Environmental Assessment (SEA) Approach for the Pow Development Master Plan	
11.2	Overview of the present state of the proposed project area	
11.3	Structure and regime for environmental and social considerations in Angola	
	11.3.1 Legal and regulatory frameworks for environmental and social considerations11-7	
	11.3.2 Differences between the JICA guidelines and Angolan regulations	11-9
	11.3.3 Organizations and their roles for Environmental and Social considerations	11-10
11.4	Comparison of Alternatives (including Zero Options)	11-13
11.5	Scoping	11-14
11.6	Results of SEA	11-15
11.7	Environmental Evaluation	11-62
11.8	Scenario analysis from environmental and social viewpoints	11-63
11.9	Expected mitigation measures	11-65
11.10	0 Implementation of the monitoring plan	11-66
11.1	1 Stakeholder Meeting	11-67
11.12	2 SEA concerning transmission expansion plans	11-77
	ter 12 Drafting the Master Plan	10.1

12.1 To Draft Comprehensive Power Master Plans toward the Year 2040
12.1.1 Generation Development Project List Formulation Policy
12.1.2 Policy for Formulating the Transmission Development Project List12-2
12.1.3 Project Lists
12.2 Projects to which Japan can contribute from a technical standpoint
12.2.1 South Transmission System Enhancement Project
12.2.2 New CCGT Project12-21
12.2.3New GT Construction as a Peak Demand Power Supply & Introduction of SCADAfor GT Control
12.2.4 Project to Repower Old Hydropower Plants
12.3 Advice to MINEA, RNT, PRODEL, ENDE and IRSEA's Action Plan on the Power Development Master Plan
12.3.1 Action Plan for the Power Development Master Plan
12.3.2 Establishment of an Organization to Formulate and Continuously Revise the PDMP 12-25
12.3.3 Improvement Activities to Establish a Method for Accurate Power Demand Forecasts 12-25
12.3.4 Ongoing study on the occupancy hydropower potential
12.3.5 Management and Improvement of Fund Procurement
12.3.6 Deploying the PDMP and reflecting it in the medium-term plan of each entity12-28
12.3.7 Improvement of Power Operation System / Introduction of SCADA
12.3.8 Improvement of Operation System to Make Use of Power Generation Characteristics 12-31
12.3.9 Establishment of standards for transmission and substation facilities
Chapter 13 Technology Transfer & Capacity Building 13-1
13.1 Workshop
13.2 Training in Japan
13.2.1Participants
13.2.2Activity Records
13.3 Additional Training in Japan
13.3.1 Participants
13.3.2Activity Results

[List of Figures]

Figure 2-1	GDP of Angola
Figure 2-2	GDP growth rate of Angola2-3
Figure 2-3	GDP of Angola by sector
Figure 2-4	Restructuring of the Electric Sector
Figure 2-5	MINEA's Organization Chart
Figure 2-6	RNT organization chart
Figure 2-7	RNT grid map (as of July 2017)2-7
Figure 2-8	PRODEL organization chart
Figure 2-9	ENDE organization chart2-9
Figure 2-10	Consumption energy2-10
Figure 2-11	Consumption energy by sector and system2-10
Figure 2-12	Power demand in Angola2-11
Figure 2-13 energy sector	Baseline structure (2005) of GHG emissions in Angola by sector and emissions in the pr
-	Baseline scenario and projections of unconditional and conditional mitigation scenarios
Figure 3-1	Primary energy flow in Angola
Figure 3-2	Consumption of oil products in Angola (consumption includes international bunker) 3-2
Figure 3-3	Oil production in Angola
Figure 3-4	Exported oil production from Angola
Figure 3-5	Imported oil production into Angola
Figure 3-6	Refined oil production in Angola
Figure 3-7	Converted oil products for power production in Angola
Figure 3-8	Hydropower potential throughout Angola
Figure 3-9	Locations of existing/planned hydroelectric power plants
Figure 3-10	Crude oil production results in Angola $(2012 \sim 2016)$
Figure 3-11	Oil development in Angola
Figure 3-12	Amounts of natural gas produced in Angola
Figure 3-13	The total capacity of projects considered for each RE
Figure 3-14	the medium-small hydropower potential diagram in Angola
Figure 3-15	Solar energy potential in Angola
Figure 3-16	Wind Energy potential in Angola
Figure 3-17	Biomass generation potential in Angola
Figure 3-18	Actual production of LNG from 2012 to 2016
Figure 3-19	Changes in crude oil prices in the international market
Figure 3-20	Forecasted fluctuation of natural gas prices (2000 - 2040)

Figure 5-1	Current Power Demand Forecast (annual maximum demand)	5-1
Figure 5-2	Actual records of power demand	5-2
Figure 5-3	Past records and forecast of real GDP	5-2
Figure 5-4	Population Density Map (2014)	
Figure 5-5	Population Density Distribution by Region (2014)	5-3
Figure 5-6	Population Forecast in Angola	5-4
Figure 5-7	Relationship between GDP Growth Rate and Generated Energy Growth Rate	5-4
Figure 5-8	Monthly Maximum Demand and Load-shedding Results	5-6
Figure 5-9	Comparison of Monthly Maximum Demand Results in North System	5-7
Figure 5-10	Actual Daily Load Curves (North System: 2016)	5-7
Figure 5-11	Actual Daily Load Curves (North System: 2016)	5-8
Figure 5-12	Location of Lauca Hydropower Plant	5-8
Figure 5-13	Power Demand Forecasting Flow in Angola	5-10
Figure 5-14	Electrification Plan	5-11
Figure 5-15	Annual Maximum Power Demand Forecast	5-12
Figure 5-16	Daily Load Curves as of 2016 (North System)	5-14
Figure 5-17	Daily Load Curve Forecast up to 2040 (North System; Highest 3 days)	5-15
Figure 5-18	Daily Load Curves of Isolated Subsystem in North System (2016)	5-15
Figure 5-19	Daily Load Curves as of 2016 (Center+South+East System)	5-16
Figure 5-20	Daily Load Curve Forecast (Center+South+East System; Highest 3 days)	5-17
Figure 5-21	Daily Load Curve Forecast (Whole County; Highest 3 days)	5-17
Figure 5-22	Generated Energy Demand Forecast	5-18
Figure 5-23	Relationship between GDP and Electricity Consumption per Capita	5-19
Figure 6-1	Composition of installed capacity	6-1
Figure 6-2	Composition of available generation capacity	6-2
Figure 6-3	Inflow record of Capanda Hydropower Station	6-7
Figure 6-4	Generation record of Capanda Hydropower Station	6-8
Figure 6-5	Location of Soyo 1 CCGT	6-9
Figure 6-6	Bird's-eye View of Soyo 1 CCGT	6-9
Figure 6-7	Actual records of the forced outage rates of power stations	6-15
Figure 6-8	Annual expenditure by generation type (2018)	6-18
Figure 6-9	Annual expenditure by generation type (2040)	6-18
Figure 6-10	Character of peak facilities (2040)	6-18
Figure 6-11	Character of middle facilities (2040)	6-18
Figure 6-12	Development pattern for large hydropower by 2040	6-20
Figure 6-13	Relationship between LOLE and reserve margin rate	6-20
Figure 6-14	Necessary reserve margin rate equivalent to LOLE of 24 hrs	6-20

Figure 6-15	Configuration ratio of GT and total annual cost (year 2040)
Figure 6-16	Cost minimum configuration of power supply in the year 2040 (November balance) 6-22
Figure 6-17	Power development plan (Draft)
Figure 6-18	Impact of introducing wind power (year 2040)
Figure 6-19	Impact of introducing solar power (year 2040)
Figure 6-20	kW balance of each month in 2040
Figure 6-21	kWh balance of each month in 2040
Figure 6-22	Example of load dispatch for one day <dry 2040="" november="" season,=""></dry>
Figure 6-23	Example of load dispatch for one day <flood 2040="" may="" season,=""></flood>
Figure 6-24	Example of weekly load dispatch <dry 2040="" november="" season,=""></dry>
Figure 6-25	Example of weekly load dispatch <flood 2040="" may="" season,=""></flood>
Figure 6-26 F	Power development plan (base case)
Figure 6-27	Supply-demand balance (base case, peak balance in November)
Figure 6-28	Supply-demand balance (base case, installed capacity-annual peak balance)
Figure 6-29	Annual generation cost (base case)
Figure 6-30	Unit cost of generation (base case)
Figure 6-31	Greenhouse gas emission (base case)
Figure 6-32	Angolan reduction plan (DRAFT INDC) and base case emission
Figure 6-33	Influence of delays in hydropower development
Figure 6-34	Influence of demand rise (=delay in the development of all power station types) 6-32
Figure 6-35	Cost increase for introducing emergency power supply
Figure 6-36	Increase of CO ₂ emission by introducing emergency power supply
Figure 6-37	Cost increase when using LPG/LNG as fuel for CCGT
Figure 6-38	CO ₂ reduction effect of large-scale introduction of wind/solar power
Figure 6-39	Increase of generation cost by introducing wind/solar power
Figure 6-40	Increase of unit cost by introducing wind/solar power
Figure 7-1	Transmission system map of Angola (July 2017)
Figure 7-2	Transmission system map of the center of the capital city Luanda
Figure 7-3	Transmission system map of Angola (2025)
Figure 7-4	Transmission system map of Angola (2027)
Figure 7-5	66 kV concrete pole
Figure 7-6	66 kV one circuit angle tower7-7
Figure 7-7	60 kV underground cable branch tower7-7
Figure 7-8	60 kV steel pipe tower
Figure 7-9	220 kV steel pipe tower (tension)
Figure 7-10	220 kV steel pipe tower (suspension)

Figure 7-11	220 kV Transmission line along the road	7-8
Figure 7-12	220 kV steel angle tower	7-8
Figure 7-13	400 kV one circuit transmission lines (distant view)	7-9
Figure 7-14	66 kV/15 kV transformer made in China	7-11
Figure 7-15	Control screen for variable compensation reactor	7-11
Figure 7-16	220 kV vertical type gas-insulated circuit breaker	7-11
Figure 7-17	Indoor type gas-insulated switchgear	7-11
Figure 7-18	Example of a multiple bus configuration (220 kV Futungo substation)	7-12
Figure 7-19	Existing plan for the northern system as of 2022 by RNT	7-17
Figure 7-20	Existing plan for the northern system as of 2027 by RNT	7-17
Figure 7-21	Existing plan for the central, southern and western systems as of 2022 by RNT	7-18
Figure 7-22	Existing plan for the central, southern and western systems as of 2027 by RNT	7-18
Figure 7-23	Estimated 400 kV substation cost	7-20
Figure 7-24	Estimated 220 kV substation cost	7-21
Figure 7-25	Outline of international interconnections with Angol	7-22
Figure 7-26	Outline of the international interconnection plan concept with SAPP	7-24
Figure 7-27	Flowchart of the Transmission Network Development Plan	7-25
Figure 7-28	System connection status of Soyo thermal power station	7-32
Figure 7-29	Status of connection of Luachimo hydroelectric power station	7-32
Figure 7-30	Connection status of thermal power stations in the Luanda area	7-33
Figure 7-31	Connection status of hydropower stations in the Cuanza River area	7-33
Figure 7-32	Connection status of hydropower stations in the Quive River area	7-34
Figure 7-33	System connection status around the Lobito thermal power plant	7-34
Figure 7-34	System connection status of the Namibe thermal powerplant and Baynes hydropowe	-
Figure 7-35	Main power system of the center of Luanda in 2017 (400 kV, 220 kV)	7-40
Figure 7-36	Main power system of the center of Luanda in 2040 (RNT's draft)	7-40
Figure 7-37	Main power system of the center of Luanda in 2040 (JICA's draft)	7-41
Figure 7-38	Eastern bulk power system calculation result in 2040 (Capanda=Xa-Mutenba T/L	
Figure 7-39	Eastern bulk power system calculation result in 2040 (Mutenba = Saurimo T/L :	N-1)
Figure 7-40	Main power system in 2040 (400 kV, 220 kV)	
Figure 7-41	RNT's power system plan in 2040 (400 kV, 220 kV)	7-46
Figure 7-42	Main power system in 2025 (400 kV, 220 kV)	7-48
Figure 7-43	Main power system in 2030 (400 kV, 220 kV)	7-49
Figure 7-44	Main power system in 2035 (400 kV, 220 kV)	7-50

Figure 7-45	Main power system in 2040 (400 kV, 220 kV)	1
Figure 8-1	Ranking of Angola and other comparator countries	1
Figure 8-2	Ranks and scores for each topic	2
Figure 9-1	Annual Investment up to 2040 (in terms of the Construction Schedule)	6
Figure 9-2	Borrowings up to 2040 and Financial Expenses	9
Figure 9-3	Total Annual Cost and Unit Cost for Generation	1
Figure 9-4	Total Annual Cost and Unit Cost for Transmission and Sub-station	1
Figure 9-5	Annual Unit Incremental Cost for Generation	2
Figure 9-6	Annual Unit Incremental Cost for Transmission and Sub-station	3
Figure 11-1	Workflow for the SEA11-	1
Figure 11-2	Status of Vegetation	3
Figure 11-3	Welwitschia mirabilis	4
Figure 11-4	Distribution of Protected Areas	5
Figure 11-5	Screening and Appraisal for Environmental Permit Issuance	2
Figure 11-6	Locations of the Generation Power Site	7
Figure 11-7	Site for CAMBAMBE Hydropower Plant11-13	8
Figure 11-8	Site for CIMANGOLA Thermal Power Plant	2
Figure 11-9	Site for BENJAMIN Wind Power Plant11-24	4
Figure 11-10) Site for CALENGA Wind Power Plant 11-23	8
Figure 11-11	Site for GASTAO Wind Power Plant	0
Figure 11-12	2 Site for KIWABANZOJI I Wind Power Plant	2
Figure 11-13	3 Site for MUSSENDE I Wind Power Plant 11-34	4
Figure 11-14	Site for NHAREA Wind Power Plant	6
Figure 11-15	5 Site for TOMBWA Wind Power Plant11-33	8
Figure 11-16	5 Site for BENGUELA Solar Power Plant 11-40	0
Figure 11-17	7 Site for CARACULO Solar Power Plant	2
Figure 11-18	3 Site for CAMBOUNGUE Solar Power Plant	4
Figure 11-19	9 Site for GANDA/ALTOCATUMBELA Solar Power Plant	6
Figure 11-20) Site for Solar LOBITO/CATUMBELA Power Plant 11-4	8
Figure 11-21	Site for LUBANGO Solar Power Plant	0
Figure 11-22	2 Site for MATALA Solar Power Plant	2
Figure 11-23	3 Site for QUIPUNGO Solar Power Plant	4
Figure 11-24	Site for NAMACUNDE Solar Power Plant	6
Figure 11-25	5 Site for TECHAMUTETE Solar Power Plant 11-53	8
Figure 11-26	5 Environmental Impact Analysis Diagram of Power Generation Type (Overall) 11-62	2
Figure 11-27	7 Transmission Lines to be evaluated by SEA (5+1 Routes)	7
Figure 12-1	Summary of Generation Development Plan & Transmission Development Plan 12-1	1

Figure 12-2	Project Map toward 2040	
Figure 12-3	Project Map toward 2040 (nearby Luanda)	
Figure 12-4	Project Map toward 2040 (Northern Region from Luanda)	
Figure 12-5	Project Map toward 2040 (Western Region from Luanda)	
Figure 12-6	Project Map toward 2040 (Central Region)	
Figure 12-7	Project Map toward 2040 (South Region)	
Figure 12-8	Current Project under Construction	
Figure 12-9	South Transmission System Enhancement Project Map	
Figure 12-10	Biópio HPP's Current Status	
Figure 12-11	Example of Organization to Formulate PDPM	
Figure 12-12	Action Plan and Structure for Power Demand Forecast	
Figure 12-13	Example of SCADA	
Figure 12-14	TEPCO's Load Dispatching Offices	
Figure 12-15	Staffing of Load Dispatching Office	

[List of Tables]

Table2-1 I	Installed capacity of power plants in Angola (as of the end of June 2017)	
Table2-2	ENDE company profile	2-9
Table2-3	Power plants commissioned in 2016 & 2017	2-11
Table 3-1	List of new large hydropower plants	
Table 3-2	Information on existing/planned refinery facilities	
Table 3-3	Fuel Characteristics	
Table 5-1	Transition of Electrification Rate	5-5
Table 5-2	Electrification Rate and Maximum Power Demand by Province (2016)	5-9
Table 5-3	Incremental Power Demand Forecast for Commercial and Industrial Sectors	
Table 5-4	Annual Maximum Power Demand Forecast	
Table 5-5	Monthly Maximum Demand Fluctuation Normalized	
Table 5-6	Monthly Maximum Demand Fluctuation Normalized	
Table 5-7	Annual Generated Energy Demand Forecast by System	
Table 6-1	Major power generation plants by region by type (MW)	6-1
Table 6-2	Available capacity of thermal power (MW)	6-2
Table 6-3	Available capacity by type by region (MW)	6-2
Table 6-4	Ownership of power plants (MW)	6-2
Table 6-5	List of existing hydropower stations as of October 2017	6-4
Table 6-6	List of existing thermal power stations as of October 2017	6-5

Table 6-7	Candidate hydropower projects	6-12
Table 6-8	Candidate wind power generation projects	6-13
Table 6-9	Candidate solar power projects	6-13
Table 6-10	Construction unit cost for each type of power	6-14
Table 6-11	Fuel types and efficiencies of thermal power plants	6-14
Table 6-12	Conditions for financial evaluation	6-15
Table 6-13	Calorific values and greenhouse gas emissions per unit for different fuels	6-16
Table 6-14	Fuel price for development planning	6-16
Table 6-15	Expected emission from power generation (base case) and DRAFT INDC	6-30
Table 6-16	Pros and cons of the locations set for thermal power	6-34
Table 6-17	Cost characteristics of candidate sites for CCGT	6-36
Table 6-18	Narrowing down and selection of CCGT location	6-37
Table 6-19	Long-term power development plan	6-40
Table 7-1	Voltage criteria	7-6
Table 7-2	List of 400 kV transmission lines (as of October 2017)	7-10
Table 7-3	List of 220 kV transmission lines (as of October 2017)	7-10
Table 7-4	List of 400 kV substations (as of October 2017)	7-12
Table 7-5	List of 220 kV substations (as of October 2017)	7-13
Table 7-6	Existing 400 kV main power transmission plans by RNT (~ 2027)	7-14
Table 7-7	Existing 400 kV main substation plans by RNT (~ 2027)	7-14
Table 7-8	Existing 220 kV main power transmission line plans by RNT (~ 2027)	7-15
Table 7-9	Existing 220 kV main substation plans by RNT (~ 2027)	7-16
Table 7-10	Estimated transmission line cost per km	7-19
Table 7-11	Cost per substation based on the total transformer capacity	7-21
Table 7-12	220 kV Substation plan based on demand forecast of northern region	7-26
Table 7-13	220 kV Substation plan based on the demand forecast for the central region	7-27
Table 7-14	220 kV Substation plan based on the demand forecast for the southern region	7-28
Table 7-15	220 kV Substation plan based on the demand forecast for the western region	7-28
Table 7-16	Review of the Transmission Line plan accompanying the regional supply substation	•
Table 7-17	Result of Transmission Line connection based on the power generation plan	
Table 7-18	400 kV main Substation plan based on electric power system analysis	7-36
Table 7-19	400 kV main Transmission Line plan based on electric power system analysis	7-37
Table 7-20	Substation load data	7-38
Table 7-21	Sensitivity of 400kV Saurimo Bus	7-41
Table 7-22	Cost Comparison	7-43
Table 7-23	Transmission losses of each CCGT installed site in 2040	7-45

Table 7-24	Transmission losses in 2040	. 7-47
Table 7-25	Required Volume of Reactive Power Compensators in each Substation	.7-52
Table 7-26	Three-Phase Short Circuit Fault Currents	.7-53
Table 7-27	List of 400 kV Substation Projects	.7-54
Table 7-28	List of 220 kV Substation Projects (1)	.7-55
Table 7-29	List of 220 kV Substation Projects (2)	.7-56
Table 7-30	List of 400 kV Transmission Line Projects	. 7-57
Table 7-31	220 kV List of Transmission Line Projects	. 7-58
Table 7-32	List of Power Supply Transmission Line Projects	. 7-59
Table 8-1	Problems in Angola's investment environment	8-3
Table 8-2	Names of laws related to the private investment environment	8-4
Table 9-1	Typical Loan Conditions	9-4
Table 9-2	Unit Prices for Construction	9-5
Table 9-3	Long-term Investment Plan up to 2040 (commissioning Year)	9-5
Table 9-4	Long-term Investment and 2016 Sales and Net Profit levels of PRODEL and RNT	9-6
Table 9-5	Standardized Annual Construction Schedule during the Construction Period	9-7
Table 9-6	Long-term Investment Amount up to 2040 (in terms of the Construction Schedule)	9-7
Table 9-7	Loan Conditions for Candidate Loans	9-9
Table 9-8	Borrowings up to 2040 and Financial Expenses	9-9
Table 9-9	Details on Depreciation and IDC	.9-10
Table 9-10	Annual Unit Incremental Cost for Generation (hydro and thermal)	.9-12
Table 9-11	Annual Unit Incremental Cost for Transmission and Sub-station	.9-12
Table 9-12	Unit Revenue Price/kWh and Unit Cost Price/kWh	.9-13
Table 9-13	Unit Prices and Unit Incremental Costs	.9-14
Table 9-14	Summary of Power Tariffs as of December 2015	.9-14
Table 9-15	Equity Ratios with Long-term Investment	.9-16
Table 10-1	Profit and Loss Statement (P/L)	. 10-1
Table 10-2	Balance Sheet (B/S)	. 10-2
Table 10-3	Cash Flow Statement (C/F)	. 10-3
Table 10-4	Major financial ratios	. 10-4
Table 10-5	Profit and Loss Statement (P/L)	. 10-4
Table 10-6	Balance Sheet (B/S)	. 10-5
Table 10-7	Cash Flow Statement (C/F)	. 10-6
Table 10-8	Major financial ratios	. 10-6
Table 10-9	Profit and Loss Statement (P/L)	. 10-7
Table 10-10	Balance Sheet (B/S)	. 10-7
Table 10-11	Cash Flow Statement (CF)	. 10-8

Table 10-12 Major financial ratios	10-9
Table 10-12 Wajor Intaleral ratios Table 10-13 Unit Revenue Prices and Unit Cost Prices	
Table 10-14 Collection (days) for Bills (days)	
Table 10-15 Current Ratio	
Table 10-16 Debt Equity Ratio	
Table 10-17 The Unit Incremental Cost Derived from the Long-term Investment	
Table 10-18 GDP and General Government Gross Debt of Angola	
Table 11-1 Number of Endangered Species in Angola	
Table 11-2 List of Protected Area	
Table 11-3 General Land Balance Sheet	
Table 11-4 Legal and Regulatory Frameworks for Environmental and Social Consider	
Table 11-5 International Treaties/Conventions Concerning SEA	
Table 11-6 Reduction of CO_2 emissions by project proposed by M/P	
Table 11-7 Differences between JICA Guidelines and Angolan regulations on SEA	
Table 11-8 Scoping Item Selection for SEA	
Table 11-9 Selected scoping items and impact evaluation indicators	
Table 11-10 Impact Evaluation Criteria	
Table 11-11 Power Development Candidate Sites for SEA	
Table 11-12 Evaluation Results on the CAMBAMBE HPP	11-19
Table 11-13 Evaluation Results on the MATALA HPP	11-21
Table 11-14 Evaluation Results on the CIMANGOLA Thermal Power Plant	
Table 11-15 Evaluation Results on the BENJAMIN Wind Power Plant	
Table 11-16 Evaluation Results on the CACULA Wind Power Plant	11-27
Table 11-17 Evaluation Results on the CALENGA Wind Power Plant	11-29
Table 11-18 Evaluation Results on the GASTAO Wind Power Plant	11-31
Table 11-19 Evaluation Results on the KIWABANZOJI I Wind Power Plant	11-33
Table 11-20 Evaluation Results on the MUSSENDE I Wind Power Plant	11-35
Table 11-21 Evaluation Results on the NHAREA Wind Power Plant	11-37
Table 11-22 Evaluation Results on the TOMBWA Wind Power Plant	11-39
Table 11-23 Evaluation Results on the BENGUELA Solar Power Plant	11-41
Table 11-24 Evaluation Results on the CARACULO Solar Power Plant	11-43
Table 11-25 Evaluation Results on the CAMBOUNGUE Solar Power Plant	11-45
Table 11-26 Evaluation Results on the GANDA/ALTOCATUMBELA Solar Power P	'lant 11-47
Table 11-27 Evaluation Results on the LOBITO/CATUMBELA Solar Power Plant	11-49
Table 11-28 Evaluation Results on the LUBANGO Solar Power Plant	11-51
Table 11-29 Evaluation Results on the MATALA Solar Power Plant	
Table 11-30 Evaluation Results on the QUIPUNGO Solar Power Plant	11-55

Table 11-31	Evaluation Results on the NAMACUNDE Solar Power Plant	
Table 11-32	Evaluation Results on the TECHAMUTETE Solar Power Plant	
Table 11-33	Evaluation Results on the Huila Biomass Power Plant Power Plant	11-61
Table 11-34	Environmental indicator on each power generation plant	
Table 11-35	Evaluation Points on the Global Environment for Each Power Source	
Table 11-36	Evaluation Points on the Regional Environment for Each Power Source	
Table 11-37	Expected Mitigation Measures for Each Power Source	
Table 11-38	Common Monitoring Items for Power Development Project	11-66
Table 11-39	List of T/Ls to be evaluated by SEA	11-77
Table 11-40 impacts of ea	Items to watch when implementing or selecting the T/L routes and ch route	
Table 11-41	Scoping for Capanda PS – Saurimo Transmission Line	11-79
Table 11-42	Scoping for Cambambe PS – Lubango Transmission Line	
Table 11-43	Scoping for Belem do Dango – Lubango SS Transmission Line	
Table 11-44	Scoping for Lubango SS – Cahama SS – Baynes SS Transmission Line	
Table 11-45	Scoping for Belem do Dango – Ondjiva SS Transmission Line	11-84
Table 11-46	Scoping for Cahama SS – Ruacana PS Transmission Line	
Table 11-47	Survey Items and Methods	11-86
Table 11-48	Environmental Items to be considered for Determination of the T/L Route	
Table 11-49	Expected Mitigation Measures for Transmission Lines	
Table 11-50	Common Monitoring Items for Transmission Line Expansion Projects	11-89
Table 12-1	List of Generation Development Plan Projects	
Table 12-2	List of 400 kV Substation Projects	
Table 12-3	List of 220 kV Substation Projects (1)	
Table 12-4	List of 220 kV Substation Projects (2)	
Table 12-5	List of 400 kV Transmission Line Projects	
Table 12-6	List of 220 kV Transmission Line Projects	
Table 12-7	List of Transmission Line Projects for Newly Developed Power Sources	
Table 12-8	List of South Transmission System Enhancement Projects	
Table 12-9	CCGT Project (example)	
Table 12-10	Construction of Peak Demand Power Supply & Introduction of SCADA	
Table 12-11	Current Status of the HPP	
Table 12-12	Action Plans for the Power Development Master Plan	
Table 12-13	Flow of Implementation of ODA Loan	
Table 12-14	Medium-Term Planning Cycle	
Table 12-15	The standard for Substation facilities	
Table 12-16	The standard for Transmission line facilities	

Table 12-17	Compare of AAAC and LL-ACSR	
Table 12-18	Schedule for Action Plan on PDMP	12-35
Table 13-1	Workshop Curriculum	
Table 13-2	Participants List	
Table 13-3	Activity Record of Training in Japan	

[Abbreviations]

Abbreviation	Word	
ACCC	All Aluminium Alloy Conductor	
AC	Alternating Current	
ACSR	Aluminum Conductors Steel Reinforced	
AGC	Automatic Generation Control	
AOA	Angolan Kwanza	
ARAP	Abbreviated Resettlement Action Plan	
ATP	Alternative Transient Program	
AfDB	African Development Bank	
BAU	Business as Usual	
bbl	Barrel	
BOD	Biochemical Oxygen Demand	
BOT	Build-Operate-Transfer	
BP	British Petroleum	
bp	Base Point	
bpd	base i ont	
B/S	Balance Sheet	
C/C	Combined Cycle	
C/P	Counterpart	
CCGT	Combined Cycle Gas Turbine	
CCPP	Combined Cycle Power Plant	
CIRR	Commercial Interest Reference Rates	
CMEC	China Machinary Engineering Corporation	
CO ₂	Carbon Dioxide	
COP	Conference of the Parties	
CR		
CRF	Critically Endangered	
DAC	Capital Recovery Factor Development Assistance Committee	
DAC	Direct Current	
DES		
DFR	Debt Equity Swap	
DG	Draft Final Report Diesel Generator	
DNA		
DNA	National Directorate of Water	
DNEE	National Directorate of Electric Energy	
DNERL	National Directorate of Renewable Energies	
DNERL	National Directorate of Rural and Local Electrification	
DR Congo	National Deirectorate for Prevention and Environmental Impact Assessment	
ECA	Democratic Republic of the Congo Export Credit Agency	
EDEL	Export Credit Agency Empresa de Electricidade de Luanda	
EFL	Environmental Framework Law	
EIA		
EIRR	Environmental Impact Assessment Economic Internal Rate of Return	
EIKK		
	Environmental Monitoring Plan	
EMP	Environmental Management Plan	
EMTP	Electromagnetic Transient Program	
ENDE	Endangered	
ENDE	National Electricity Distribution Company	
ENE	Empresa Nacional de Electricidade	

Abbreviation	Word	
EPA	Environmental Protection Agency	
EPC	Engineering, Procurement and Construction	
EU	European Union	
EUR	Euro	
F/S	Feasibility Study	
FIRR	Financial Internal Rate of Return	
FR	Final Report	
GABHIC	Gabinete Para a Administração da Bacia Hidroeléctrica do Cunene	
GAMEK	Gabinete de Abinete de Aproveintamento do Médio Kwanza	
GDP	Gross Domestic Product	
GE	General Electric Company	
GHG	Green House Gas	
GIB	Gas Insulated Busbars	
GIS	Gas Insulated Busbars Gas Insulated Switchgear	
GIS	Geographic Information System	
GIT	Gas Insulated Transformer	
GT	Gas Turbine	
GW	Gigawatt	
GWh	Gigawatt hour	
HFO	Heavy Fuel Oil	
HPP	Hydropower Plant	
HPS	Hydropower Station	
HQ	Headquarters	
HRSG	Heat Recovery Steam Generator	
HV	High Voltage	
IDC	Interest during Construction	
IEA	International Energy Agency	
IMF		
INDC	International Monetary Fund	
INDC	Intended Nationally Determined Contribution Instituto Nacional de Estatística	
I/P	Implementation Report	
IPP	Independent Power Producer	
IRR	Internal Rate of Return	
IRSEA		
IUCN	Instituto Regulador dos Servicos de Electricidate e Agua International Union for Conservation of Nature	
Ic/R		
It/R	Inception Report	
JBIC	Interim Report	
JCC	Japan Bank for International Corporation	
JICA	Joint Coordination Committee	
JOGMEC	Japan International Cooperation Agency	
JPY	Japan Oil, Gas and Metals National Corporation	
JV	Japanese Yen	
km	Joint Venture Kilometer	
kIII	Kilowelt	
kV kW	Kilovolt	
	Kilowatt	
kWh	Kilowatt Hour	
kt-CO2e	Kiloton of Carbon Dioxide Equivalent	
L/A	Loan Agreement	
LFO	Light Fuel Oil	
LIBOR	London Interbank Offered Rate	
LNG	Liquefied Natural Gas	
LOLE	loss of load expectation	

Abbreviation	Word	
LOLP	Loss of Load Probability	
LPG	liquefied petroleum gas	
LRMC	Long-run Marginal Cost	
LV	Low Voltage	
Mcal	Mega clorie	
MINEA	Ministry of Energy and Water Resources	
MMBTU	Million British Thermal Unit	
MOEF	Ministry of Environment and Forestry	
MOU	Memorandum of Understanding	
MScfpd	Million Standard cubic feet per day	
MUS\$	Million U.S. dollar	
MVA	Mega volt ampere	
MW	Megawatt	
NDP	National Development Plan	
NESSP	National Power Security Strategy and Policy	
NEXI	Nippon Export and Investment	
NG	Natural Gas	
NGO	Non-Governmental Organization	
NLDC	National Load Dispatch Center	
O&M	Operation and Maintenance	
ODA	Official Development Assistance	
OECD	Organisation for Economic Co-operation and Development	
OJT		
OPGW	On-the-Job Training Optical Fiber Ground Wire	
OVPS	Overvoltage Protectors	
PAP	Project Affected People	
PDMP	Power Development Master Plan	
PDPAT		
PIL	Power Development Planning Assist Tool Private Investment Law	
P/L	Private Investment Law Profit and Loss Statement	
PPP	Public Plivate Partnership	
PRODEL	Public Electricity Production Company	
PSRSP	Power Sector Reform Suport Program	
PSS/E	Power System Simulator for Engineering	
PTSE	Electricity Sector Transformation Program	
	· · · · · · · · · · · · · · · · · · ·	
p.u. PV	per unit Photovoltaia Dowar Congration	
RETICS	Photovoltaic Power Generation Paliability Evaluation Tool for Inter connected System	
RNT	Reliability Evaluation Tool for Inter-conneted System	
ROA	National Electricity Transportation Company Return on Assets	
ROW	Right of Way	
SAPP	Southern African Power Pool	
SAF	Special Assistance Facility	
SAPI	Special Assistance Facility Special Assistance for Project Implementation	
SAPROF		
SAPS	Special Assistance for Project Formation	
SCADA	Special Assistance for Project Sustainability Supervisory Control and Data Acquisition	
SEA		
SGL	Strategic Environmental Assessment	
SHM	Sovereign Guarantee Loan	
SFIM	Stakeholder Meeting	
SS ST	Substation	
	Steam Turbine	
T/L	Transmission Line	

Abbreviation	Word	
TEPCO	Tokyo Electric Power Company	
TEPSCO	Tokyo Electric Power Service Company	
TOR	Terms of Reference	
TPP	Thermal Power Plant	
TWh	Terawatt Hour	
UNDP	United Nation Development Programme	
UNFCC	United Nations Framework Convention on Climate Change	
USD	U.S. Dollar	
UXO	Unexploded Ordenance	
VU	Vulnerable	
WB	World Bank	

Summary

1. Purpose of the Survey

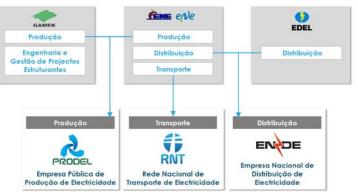
The purpose of this Survey is to produce a master plan for the generation and transmission development of the whole of Angola up to the year 2040, and thereby contribute to the smooth implementation of power development to enable a stable power supply for the country. In the course of the survey, the Survey Team will seek to:

- ➢ Formulate a comprehensive power development master plan (2018-2040) encompassing nationwide generation development plans and transmission development plans.
- Promote a sufficient understanding of the master plan by related organizations (MINEA, RNT, PRODEL, ENDE) and build up the capacity of personnel in related organizations to formulate and revise power development master plans.

2. Activities

- > Preparations at home and Discussion and Consultation on the Inception Report
- > Review of the current situation in the power sector
- Power demand forecast
- Analysis on primary energy sources for generation development
- > Formulation of a generation development plan based on an optimal power generation mix
- > Study on optimization of the transmission system development plan
- > Review of the framework and implementation of private investment
- ➢ Formulation of a long-term investment plan
- Economic and financial analysis
- Environmental and social considerations
- Drafting of the Master Plan
- Capacity building

3. Review of the Current Situation in the Power Sector

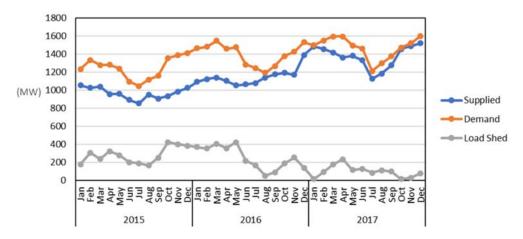

3.1 Social & Economic Situation

Item	Number
Occupied Area	1,246,700km ²
Population	25,900,000 (year 2014, source: MINEA)
GDP	103 Billion USD (WB : year 2015)

3.2 Current Status of the Power Sector

The Angola Electricity Sector is undergoing organizational reforms under the Electricity Sector Transformation Program (PTSE).

MINEA has reorganized GAMEK, ENE and EDEL into three new public companies, i.e., the power generation company PRODEL, the power transmission company RNT, and the electricity distribution company ENDE.



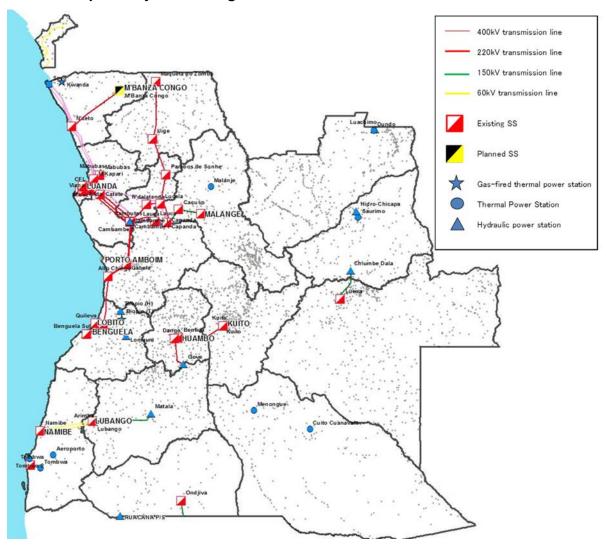
(Sources: The Transformation Program for the Electricity Sector-PTSE)

A PTSE roadmap on sector reform

recommends the following based on a study the PTSE performed on an optimum model for the electricity market: a restructuring of the market into a classic single-buyer model, an unbundling of the power utilities into Generation, Transmission, and Distribution core activities, the establishment of commercial contracts among market participants, and amendments to the laws to improve the regulations and attract PPP. The study further proposed four (4) reform phases, each with specific deliverables:

- (i) Preparation Phase (2010-2013) for the design of a new market structure;
- (ii) Phase I (2014- 2017), a stabilization phase following the sector restructuring and unbundling of the power utilities;
- (iii) Phase II (2018-2021), transition to efficient operation with limited use of IPPs, mainly in RE using RE Feed-In tariffs;
- (iv) Phase III (2021-2025), partial liberalization of the power market with the introduction of the PPP and IPPs and limited concessions for the distribution system.

3.3 Record of Power Demand & Supply

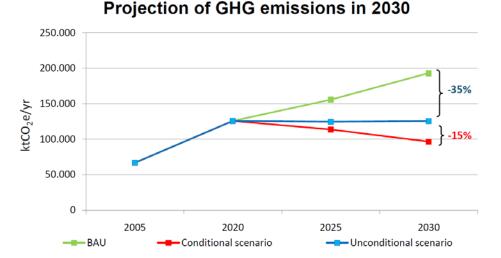

(Source: Prepared by the JICA Survey Team based on Data from RNT (NLDC)) Figure Monthly Maximum Demand and Load-shedding Results (North System)

1 abi	e mujor	bower generation plants by region and type (1111)					
		Hydropower Thermal Power		Renewable			
Region	Total	(except small)	GT	Diesel	Biomass	Wind	Solar PV
Whole Country	4,339	2,365	1,181	743	50	0	0
North Region	3,527	2,172	899	407	50	0	0
Central Region	492	125	254	113	0	0	0
South Region	221	41	28	152	0	0	0
East Region	99	28	0	71	0	0	0

3.4 Existing power plants

 Table
 Major power generation plants by region and type (MW)

(Source: Prepared by the JICA Survey Team based on Data from PRODEL, MINEA) **3.5 Current power system in Angola**



(Source: RNT)

Figure Transmission system map of Angola (July 2017)

3.6 Angolan Policy on Climate Change Measures (INDC etc.)

The country is committed to stabilizing its emissions by reducing GHG emissions by up to 50% below the BAU emission levels by 2030 through unconditional and conditional actions.

 2005
 2020
 2030

 Emissions-BAU scenario (ktCO2e)
 193,250

 Emissions-Unconditional scenario
 125,612

 (ktCO2e)
 66,812
 125,778

 Emissions-Conditional scenario
 96,625

 (ktCO2e)
 (-50%)

(source : DRAFT INDC of the Republic of Angola)

Figure Baseline scenario and projections of unconditional and conditional mitigation scenarios in Angola

4. Primary Energy Analysis for Power Development

4.1 The potential of primary energy

Primary energy	Potential					
Crude oil	Confirmed crude oil reserves: 12.7 billion barrels (BP statistics at the end of					
	2014)					
Natural gas	Confirmed natural gas reserves in Angola: total 9.7 trillion cubic feet (2014,					
	Cedigaz)					
Hydropower	Hydropower Potential: 18GW (Atras and National Strategy for the new					
	Renewable Energies)					
Solar energy	17.3GW (Atras and National Strategy for the new Renewable Energies)					
Wind energy	3.9GW (Angola Energia 2025)					
Biomass	4GW (Angola Energia 2025)					

4.2 Status of energy supply facilities

(1) LNG Production Facilities

The Angola LNG plant located in Soyo of Zair State is the only LNG production facility in Angola. Petroleum-associated gas obtained as a result of oil extraction is sent to this facility in a pipeline and processed within the facility to LNG. The Angola LNG production facility has a capacity to produce 34 MSm33/d.

(2) Oil Refinery

The only oil refinery currently established in Angola is the Luanda Refinery in the capital city Luanda. Angola's oil refining capacity is therefore insufficient relative to the national consumption of petroleum products. Currently, more than 80% of the consumption is covered by imported products.

Sonangol has formulated a plan to build new refineries in Lobito in central Angola, in Soyo and Cabinda in northern Angola, and in Namibe in southern Angola. The refinery plan at Lobito was scheduled to commence in 2018, but construction was halted in August 2016 due to a lack of funds. The Soyo refinery plan was launched but never reached the construction phase. Construction for the Namibe refinery was commenced in July 2017 and is currently proceeding.

In February 2018, Sonangol announced new oil refinery development plans in Lobito and Cabinda and expansion plans for the existing Luanda Refinery. Under the Lobito plan, a facility with a 200,000 bpd/day capacity (unchanged from the previous plan) will be completed by 2022. Under the Cabinda plan, a smaller refinery than that in Lobito will be completed by 2020. The expansion plan for the existing Luanda Refinery aims to expand production from the current 57,000 bpd/day to 65,000 bpd/day by 2020.

4.3 Fuel Price

Studies for long-term power development planning require that future fuel prices be set for thermal power. For this purpose, we adopt future fuel prices based on the current international price and IEA's long-term forecast under the New Policy Scenario (see the Table below).

Tuble Tuble Files for development pluming						
					unit: U	Scents/Mcal
Year	CrudeOil	LFO	HFO	LPG	NG	LNG
2015	3.281	3.948	3.919	4.041	1.036	4.087
2020	5.082	6.116	6.071	6.259	1.633	3.810
2025	6.111	7.354	7.300	7.527	1.892	4.266
2030	7.140	8.593	8.529	8.795	2.151	4.722
2035	7.558	9.096	9.029	9.310	2.450	4.822
2040	7.977	9.599	9.528	9.825	2.749	4.921
	2015 2020 2025 2030 2035	YearCrudeOil20153.28120205.08220256.11120307.14020357.558	YearCrudeOilLFO20153.2813.94820205.0826.11620256.1117.35420307.1408.59320357.5589.096	YearCrudeOilLFOHFO20153.2813.9483.91920205.0826.1166.07120256.1117.3547.30020307.1408.5938.52920357.5589.0969.029	YearCrudeOilLFOHFOLPG20153.2813.9483.9194.04120205.0826.1166.0716.25920256.1117.3547.3007.52720307.1408.5938.5298.79520357.5589.0969.0299.310	Year CrudeOil LFO HFO LPG NG 2015 3.281 3.948 3.919 4.041 1.036 2020 5.082 6.116 6.071 6.259 1.633 2025 6.111 7.354 7.300 7.527 1.892 2030 7.140 8.593 8.529 8.795 2.151 2035 7.558 9.096 9.029 9.310 2.450

TableFuel prices for development planning

(Source: JICA Study Team, based on the international price in 2015 and IEA data)

5. Procedure for Formulating a Power Master Plan based on the Optimal Generation Mix ("The Best Mix")

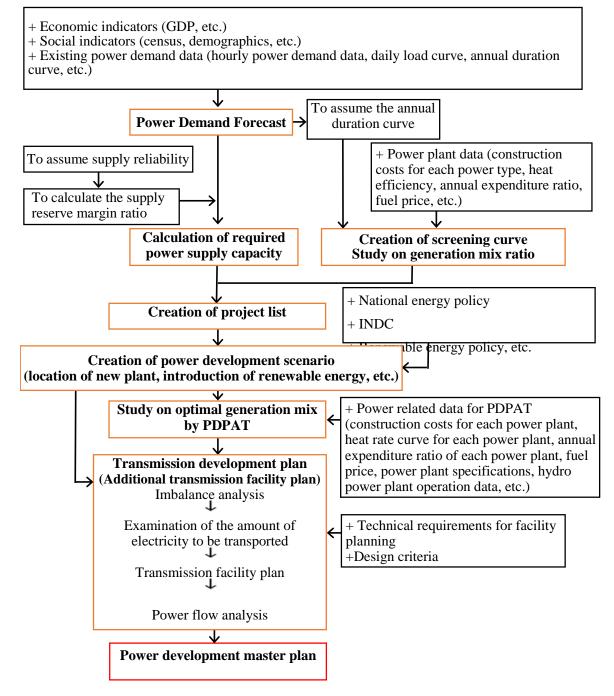
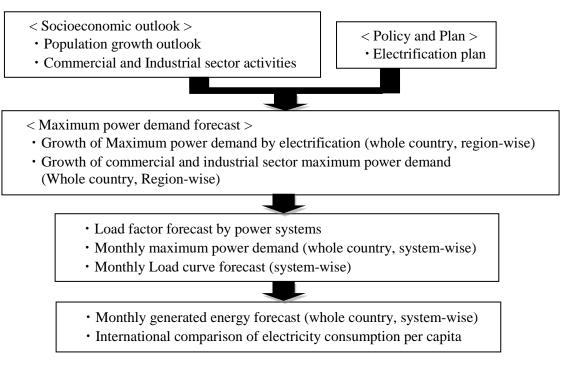



Figure Flow for Formulating a Power Development Master Plan

6. Power Demand Forecast


6.1 Power demand forecasting methodology

Figure Power Demand Forecasting Flow in Angola

6.2 Annual maximum power demand forecast

Annual maximum demand in the residential consumer sector was calculated based on the electrification rate, population, mean population per customer, maximum power demand per contract. The annual maximum power demand up to 2040 was then assumed by adding the annual maximum power demand forecast for commercial and industrial customers. The results are shown in the table and figure below. As a result of the calculations, the maximum power demand forecast for 2040 was 11,226 MW.

(unit: MW)

	2016	2020	2025	2030	2035	2040
North	1,546	2,584	3,570	4,753	5,864	6,839
Central	266	574	877	1,275	1,765	2,313
South	135	267	499	758	1,060	1,409
East	42	91	249	346	490	665
Total	1,989	3,516	5,195	7,132	9,180	11,226

(Source: JICA Survey Team)

Figure Annual Maximum Power Demand Forecast

6.3 Annual generated energy demand forecast

Generation energy demand is calculated by the following formula.

Generation energy demand (kWh) = annual maximum power demand (kW) \times 8,760 hours \times annual load factor

Table	Annual Generated E	nergy Demand	Forecast by System
-------	--------------------	--------------	--------------------

(Unit: GWh)

	North	Center	South	East	Whole
2016	9,522	1,325	673	208	11,728
2020	15,977	2,860	1,329	453	20,619
2025	22,183	4,366	2,485	1,241	30,275
2030	29,685	6,347	3,774	1,723	41,529
2035	36,805	8,790	5,279	2,442	53,316
2040	43,136	11,518	7,015	3,309	64,979

(Source: JICA Survey Team)

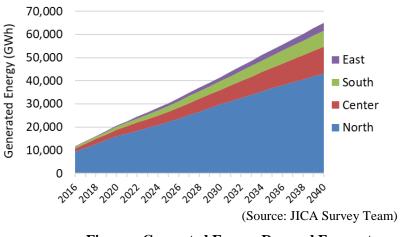


Figure Generated Energy Demand Forecast

7. Optimization of the Generation Development Plan

7.1 Relationship between LOLE and Reserve Capacity

The reserve margin ratio corresponding to 24 hours of LOLE was formulated by PDPAT and RETICS. The examination results are shown in the figures below. The required reserve margin gradually decreases over time, reaching about 11% after 2030. This level, 11%, is therefore set as the target value.

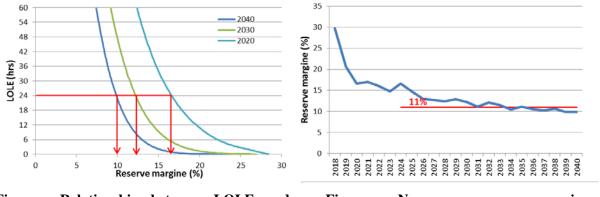
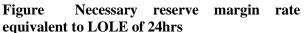



Figure Relationship between LOLE and reserve margin rate

7.2 The Most economical power supply composition ratio by using PDPAT

Here we consider the power supply composition that minimizes the total cost in the year 2040, the final year of the power master plan. We examine the most economical configuration in 2040 among large hydropower, combined cycle (CCGT), and gas turbine (GT).

The following assumptions are adopted for the calculation using PDPAT:

- \succ The target year is 2040.
- The reserve margin rate is set at 11%, is the value selected in 6.4.2. GT shares the capacity for the reserve margin, as it has a lower fixed cost.
- The supply configuration ratio is calculated in the month with the lowest reserve margin for the year and is defined as the ratio of the available supply (excluding the capacity corresponding to the reserve margin) of each power source to the peak demand of the month.

The figure below shows the relation between the total cost per year and the configuration ratio of GT, calculated using PDPAT. The annual cost is lowest when the configuration ratio of GT is 12%.

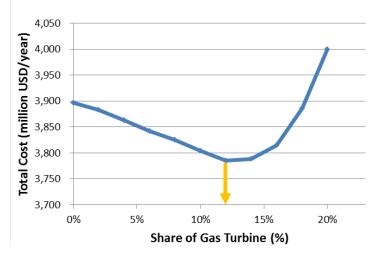
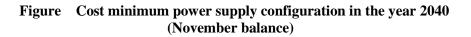
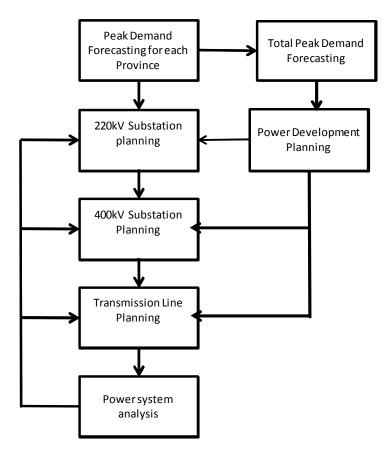



Figure Configuration ratio of GT and total annual cost (year 2040)

Peak demand in the year 2040 appears in December. Meanwhile, the most severe month of the year in terms of the supply-demand balance is November, since supply capacity of hydropower declines during the drought period. The figure below shows the power configuration ratio when the ratio of GT is set to 12% in the November 2040 section. This configuration ratio corresponds to the future target value. The final power development plan formulated for each year up to 2040 needs to approach this power configuration ratio.

Hydro 50%	CCGT 38%	GT 12%	
5,647	4,232	1,347	Reserve Margine
Peak Demand	in November 2040		11%
5,647	4,232	2,5	82
45%	34%	2	1%

7.3 List of Generation Development Plan Projects

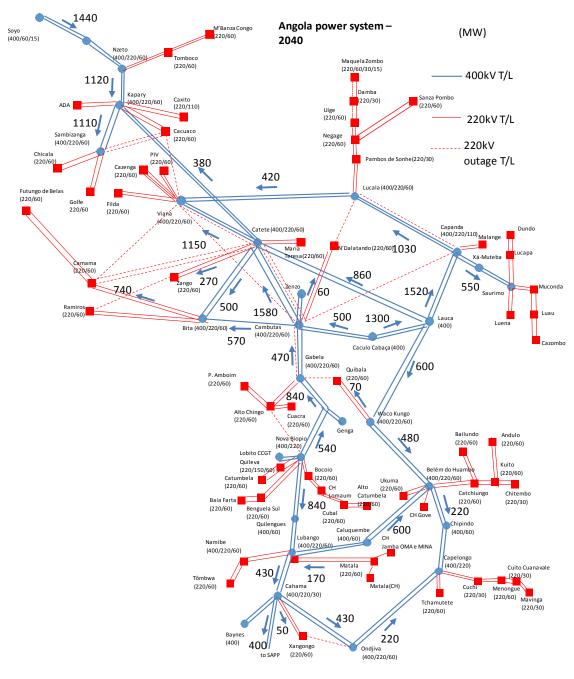

The table below shows recommended power development projects.

Year	Long-term Power Development Plan							
rear	Hydropower	CCGT	GT	Wind power	Solar power			
2017		Soyo1-1 (250)						
2018	Lauca (2070) Lomaun ext.(65)	Soyo1-2 (500)						
2019								
2020	Luachimo ext.(34)							
2021		Soyo2-1 (375)						
2022		Soyo2-2 (375)	Cacuaco No.1 (125)					
2023								
2024	Caculo Cabaça(2172)		Cacuaco No.2 (125)					
2025			Sambizanga No.1 (125)					
2026	Baynes (300)							
2027		Lobito1-1 (375)	Quileva No.1 (125)					
2028	Quilengue (210)		Quileva No.2 (125)	Beniamin (52)	Benguela (10)			
2029		Lobito1-2 (375)		Cacula (88)	Cambongue (10)			
2030			Quileva No.3 (125) Soyo-SS No.1 (125)	Chibia (78)	Caraculo (10)			
2031		Lobito2-1 (375)		Calenga (84)	Catumbera (10)			
2032	Zenzo (950)		Cacuaco No.3 (125) Cacuaco No.4 (125)	Gasto (30)	Lobito (10)			
2033			Sambizanga No.2 (125) Quileva No.4 (125) Quileva No.5 (125) Quileva No.6 (125)	Kiwaba Nzoji I (62)	Lubango (10)			
2034		Lobito2-2 (375)		Kiwaba Nzoji II (42)	Matala (10)			
2035	Genga (900)		Soyo-SS No.2 (125) Cacuaco No.5 (125)	Mussede I (36)	Quipungo (10)			
2036		Namibe1-1 (375)		Mussede II (44) Nharea (36)	Techamutete (10)			
2037			Cacuaco No.6 (125) Sambizanga No.3 (125) Soyo-SS No.3 (125)	Tombwa (100)	Namacunde (10)			
2038	Túmulo Caçador(453)	Namibe1-2 (375)						
2039								
2040	Jamba Ya Oma (79) Jamba Ya Mina (205)	Lobito3-1 (375)						
Total	7,438 MW	4,125 MW	2,250 MW	652 MW	100 MW			

Table Long-term power development plan

8. Study on Optimization of the Transmission System Development Plan 8.1 Transmission Development Planning Procedure

The development planning procedure is shown in the flowchart of the figure below.



(Source: JICA Survey Team)

Figure Flowchart of the Transmission Network Development Plan

8.2 The Transmission Development Plan for 2040

The results of the analysis using PSSE confirmed that there was no overload based on the n-1 standard for any of the transmission lines or S/Ss with voltages of 220 kV or more.

(Source: JICA Survey Team)

Figure Main power system in 2040 (400 kV, 220 kV)

8.3 Lists of Transmission Development Plan Projects

The tables below show recommended transmission development projects.

	Year				<u> </u>		
Project#	of	Area	VoltageSubstation(kV)Name		Capacity	Cost	Remarks
	operation		(kV) Name 400 Waco kungo		(MVA)	(MUS\$)	
1	2020	Cuanza Sul		0	450	40.5	450 x 1, under construction(China)
2	2020	Huambo	400	Belem do Huambo	900	51.3	450 x 2, under construction(China)
3	2022	Luanda	400	Bita	900	51.3	450 x 2, under construction(Brazil)
4	2025	Cuanza Sul	400	Waco kungo	450	40.5	upgrade 450 x 1
5	2025	Luanda	400	Bita	450	40.5	upgrade 450 x 1
6	2025	Zaire	400	N'Ze to	450	40.5	upgrade 450 x 1
7	2025	Luanda	400	Viana	2,790	96.6	upgrade 930 x 3
8	2025	Bengo	400	Kapary	450	40.5	upgrade 450 x 1
9	2025	Huila	400	Lubango2	900	51.3	450 x 2, Pre-FS implemented*
10	2025	Huila	400	Capelongo	900	51.3	450 x 2
11	2025	Huila	400	Calukembe	120	32.6	60 x 2
12	2025	Benguera	400	Nova Biopio	900	51.3	450 x 2
13	2025	Southern	400	Cahama	900	51.3	450 x 2
14	2025	Eastern	400	Saurimo	900	51.3	450 x 2, under Pre-FS
15	2025	Lunda Norte	400	Xa-Mute ba	360	38.3	180 x 2, under Pre-FS
16	2025	Huila	400	Quilengues	120	32.6	60 x 2
17	2025	Cuanza Sul	400	Gabela	900	51.3	450 x 2
18	2025	Luanda	400	Sambizanga	2,790	96.6	930 x 3
19	2025	Malanje	400	Lucala	900	51.3	450 x 2
20	2025	Chipindo	400	Chipindo	360	38.3	180 x 2
21	2030	Bengo	400	Kapary	450	40.5	upgrade 450 x 1
22	2030	Luanda	400	Catete	450	40.5	upgrade 450 x 1
23	2035	Cunene	400	Ondjiva	900	51.3	450 x 2, Pre-FS implemented*
24	2035	Luanda	400	Bita	450	40.5	upgrade 450 x 1
25	2035	Malanje	400	Lucala	450	40.5	upgrade 450 x 1
		Total			19,590	1,171.4	

Table	List of 400 kV	Substation Projects
Lanc	LISU OF TOURY	Substation I Tojects

Pre-FS implemented* Candidate site were selected by USTDA and DBSA.

Table List of 400 kV Transmission Line Projects	Table	List of 400 kV	Transmission	Line Projects
---	-------	----------------	--------------	---------------

Ducie at#	Year of	A === 0	Vakaaa	Starting point	Enderint	number of	Power Flow	Line	Cost	Remarks
Project#		Area	Voltage (kV)	Starting point	End point	circuit	(MVA)	Length (km)	(MUS\$)	Remarks
1	operation 2020	Central	400	Lauca	Waco kungo		(MVA) 307	(KIII) 177	138.1	under construction(China)
2	2020	Central	400		Belem do Huambo	1	242	177	135.7	· /
				Waco kungo		-				under construction(China)
3	2020	Northern	400	Cambutas	Bita	1	580	172	134.2	under construction(Brazil)
4	2022	Northern	400	Catete	Bita	2	504	54	52.9	under construction(Brazil)
5	2025	Northern	400	Cambutas	Catete	1	791	123	95.9	Dualization
6	2025	Northern	400	Catete	Viana	1	579	36	28.1	Dualization
7	2025	Northern	400	Lauca	Capanda elev.	1	518	41	32.0	Dualization
8	2025	Northern	400	Kapary	Sambizanga	2	1130	45	44.1	For New Substation
9	2025	Northern	400	Lauca	Catete	2	868	190	186.2	Changing Connection Plan
10	2025	Central	400	Lauca	Waco kungo	1	307	177	138.1	Dualization
11	2025	Central	400	Waco kungo	Belem do Huambo	1	242	174	135.7	Dualization
12	2025	Central	400	Cambutas	Gabela	2	484	131	128.4	Pre-FS implemented*
13	2025	Central	400	Gabela	Benga	2	848	25	24.5	Pre-FS implemented*
14	2025	Central	400	Benga	Nova Biopio	2	550	200	196.0	Pre-FS implemented*
15	2025	Southern	400	Belem do Huambo	Caluque mbe	2	606	175	171.5	Pre-FS implemented*
16	2025	Southern	400	Caluque mbe	Lubango2	2	666	168	164.6	Pre-FS implemented*
17	2025	Southern	400	Belem do Huambo	Chipindo	2	264	114	111.7	
18	2025	Southern	400	Chipindo	Capelongo	2	190	109	106.8	
19	2025	Southern	400	Nova Biopio	Quilengues	2	840	117	114.7	Pre-FS implemented*
20	2025	Southern	400	Quilengues	Lubango2	2	772	143	140.1	Pre-FS implemented*
21	2025	Southern	400	Lubango2	Cahama	2	450	190	186.2	Pre-FS implemented*
22	2025	Eastern	400	Capanda_elev	Xa-Mute ba	2	590	266	260.7	-
23	2025	Eastern	400	Xa-Muteba	Saurimo	2	510	335	328.3	under Pre-FS
24	2027	Southern	400	Capelongo	Ondjiva	2	292	312	305.8	
25	2027	Southern	400	Cahama	Ondjiva	2	442	175	171.5	
26	2027	Southern	400	Cahama	Ruacana	2	409	125	122.5	International Interconnection
				Total				3,948	3,654.2	

Pre-FS implemented*:Candidate route were selected by USTDA and DBSA.

9. Long-term Investment Plan

9.1 Investment in terms of the Commissioning Year

The following table lists investment plans by commissioning year. The total investment comes to 32,449 million USD: hydropower (19,849 million USD), thermal power (6,413 million USD), renewable energy (0 million USD), transmission line (4,551 million USD) and sub-station (1,636 million USD).

													(ur	nit: mil.
	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Hydro	0	0	5,589	34	0	0	0	0	5,864	810	0	567	0	
TPP	300	0	0	0	1,050	531	0	531	81	0	81	450	81	16
Renewable	0	0	0	0	0	0	0	0	0	0	0	0	0	
Transmission	208	0	2	414	0	878	556	2	1,614	0	785	0	0	1
Sub-station	0	25	0	225	0	444	51	0	196	0	426	0	0	1
total	<u>508</u>	<u>25</u>	5,591	673	1,050	1,854	<u>607</u>	<u>533</u>	7,756	810	1,293	1,017	82	19
	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	unit: mil. \$) total			
11.1			2033											
Hydro	0	2,603		115	2,583	153	115	1,300	38	0	19,849			
TPP	450	163	325	450	163	450	244	450	0	450	6,413			
Renewable	0	0	0	0	0	0	0	0	0	0	0			
Transmission	34	0	0	8	6	0	6	0	18	2	4,551			
Sub-station	129	0	0	0	103	0	0	0	18	0	1,636			
total	613	2,766	402	573	2,855	603	365	1,750	74	452	32,449			

 Table
 Long-term Investment Planed up to 2040 (commissioning Year)

9.2 Long-Run Marginal Cost (LRMC)

Following is the long run marginal cost (LRMC) calculated by the JICA Survey Team in accordance with the 'Internal Rate of Return (IRR) Manual for Yen Loan Projects' (JBIC):

Long Run Marginal Cost (LRMC) = total project cost \times capital recovery factor + O&M expenses

capital recovery factor = $r \swarrow (1 - (1 + r)^{-n})$

r:10%

n : durable year (hydropower, 40 years; thermal power, 25 years (CCGT) and 20 years (GT)

O&M expenses = O&M expenses + fuel cost (thermal)

O&M expense: calculated to a certain percent of the total construction cost

Fuel cost: annual fuel cost for thermal power plants

The results indicate that the unit price for generation will reach 8.5 cents USD at maximum, while the unit price for transmission and substation will reach 2 cents USD.

Table Annual Unit Incremental Cost for Generation (hydro and thermal)

														(\$ /kWh)
	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
incremental cost \$/kWh	0.031	0.024	0.014	<u>0.057</u>	0.063	0.066	0.065	0.059	0.085	0.084	0.081	0.082	0.080	0.079
											(\$ /kWh)			
type	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	total			
incremental cost \$/kWh	0.079	0.083	0.083	0.084	0.085	0.085	0.085	0.084	0.083	0.082	=			
Table	Ann	ual U	nit Inc	creme	ental C	Cost fo	r Trai	nsmis	sion a	nd Su	b-stat	ion		(\$ /kWh)
Table	Ann 2017	ual U	nit Inc	2020	ental C	2022	r Trai	15mis: 2024	sion a	nd Su	b-stat	ion 2028	2029	(\$ /kWh) 2030
Table													2029 <u>0.020</u>	
	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028		2030
	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027 <u>0.022</u>	2028		2030

These figures indicate that the unit cost of PRODEL needs to increase by 15 AOA, starting from the current 23.11 AOA. Likewise, the unit cost price of RNT needs to increase by 3.59 AOA, starting from the current 8.86 AOA.

	PRODEL	RNT
1. unit revenue price in 2016	@0.09 \$ /kWh	@0.043 \$ /kWh
1	(<u>=@20.17</u> AOA/kWh)	(=@9.34 AOA/kWh)
2. unit cost price in 2016	@0.09\$ /kWh	@0.039 \$ / kWh
Ĩ	(<u>=@19.74</u> AOA/kwh)	(<u>=@8.45</u> AOA/kWh)
3. incremental cost based on the	@0.085\$/ kWh	@0.02\$/ kWh
long-term investment	(<u>=@18.3</u> AOA/kWh)	(<u>=@4.3</u> AOA/kWh)
4. total cost $(2+3)$	@0.175 \$/kWh	@ 0.059 \$/kWh
	(<u>=@38.04</u> AOA/kWh)	(<u>=@12.75</u> AOA/kWh)
5. increase of tariff	17.9 AOA	3.41 AOA
(unit cost of investment / current unit cost)	(1.92)	(1.51)

Table Unit Prices and the Unit Incremental Costs

XUSD is converted using the official exchange rate of Nacional Banco de Angola as of March 12, 2018 (\$1=215.064 AOA (T.T.M))

10. Environmental and Social Considerations

10.1 Outline of the Strategic Environmental Assessment (SEA) Approach for the Power Development Master Plan

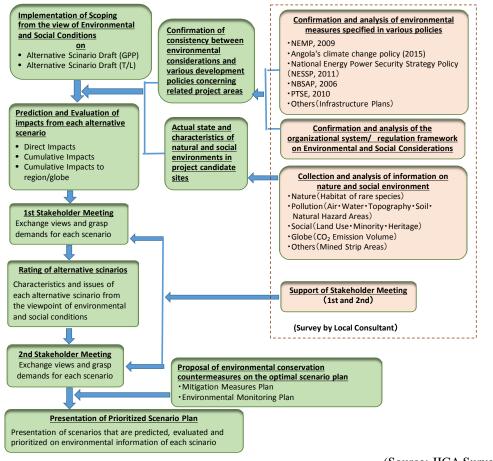
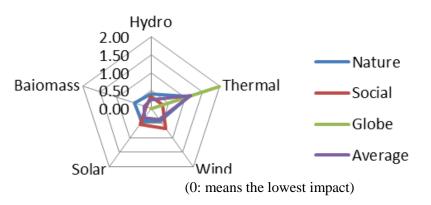


Figure Workflow for the SEA

10.2 Environmental Evaluation

The table below presents the results of SEA-based evaluations of the environmental and social considerations linked to power development, rated by indicator (degree of environmental impact).


The power sources ranked from lower negative impacts on the natural and social environment are as follows: (i). Biomass, (ii). Hydropower, (iii). Solar, (iv). Wind, (v). Thermal (LNG/Heavy Oil).

The relatively high total environmental impact assessed for wind power and solar power generation stems from the large negative impact on the local landscape caused by the appearance of huge artificial structures in the vast plains (mainly savanna, shrub vegetation) of the continent of Africa.

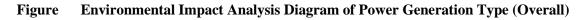
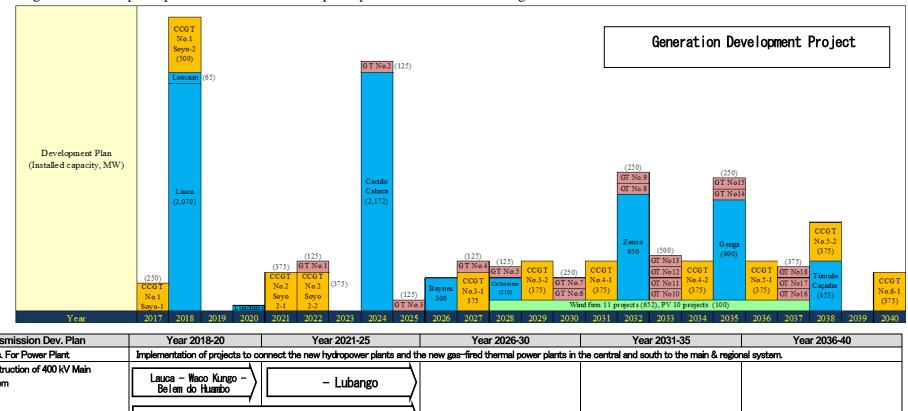

Table 1		onmental indicators for the Different Types of Fower Generation Flants																					
	Type	HY	PP	THPP				Wind	I PP								Sola	r PP					Bio. PP
	Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
	MW	960	40.8	212	52	88	84	30	62	36	36	100	10	10	10	10	10	10	10	10	10	10	3
Topography & Geology		-1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Soil		-1.0	0.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	0.0	0.0	0.0	0.0
Quality of Water		-1.0	-1.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0	-1.0	-1.0
Quality of Air		0.0	0.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0
Noise/Vibration		0.0	0.0	-1.0	-1.0	-1.0	0.0	0.0	-2.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0
Waste		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Subsidence		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flora		-2.0	-1.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0	-2.0	-2.0	-2.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fauna/Fish/Coral		-1.0	0.0	-2.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-1.0	-1.0	-2.0	-1.0	0.0	-1.0	-1.0	0.0	0.0	0.0	0.0
Nature Protected Area	s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(Natural Environment)		-0.60	-0.20	-1.10	-0.40	-0.40	-0.30	-0.30	-0.50	-0.50	-0.40	-0.70	0.50	-0.60	-0.70	-0.60	-0.30	-0.40	-0.40	-0.30	-0.30	-0.30	-0.50
(Aberage)		-0.	40	-1.10				-0.	43								-0.	44					-0.50
Resettlement		-1.0	-1.0	-1.0	0.0	-1.0	-1.0	0.0	-2.0	-2.0	0.0	0.0	-1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ethnic /Indigenous peo		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Land use		0.0	0.0	0.0	-1.0	-1.0	-1.0	0.0	0.0	0.0	-1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0	0.0	0.0	0.0
Water Use		-1.0	-1.0	-1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0
Landscape		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	-3.0	0.0
Historical Heritage		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(Social Environment)		-0.33	-0.33	-0.33	-0.66	-0.83	-0.66	-0.50	-0.83	-0.83	-0.66	-0.50	-0.66	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.66	-0.50	-0.50	-0.15
(Average)		-0.	.33	-0.33				-0.	68								-0.	53					-0.15
een House Gas		0.0	0.0	-2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
(Globale Environment)	0.00	0.00	-2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(Average)		0.0	00	-2.00				0.0	00								0.0	00					0.00
Comprehensive Enviro Indexes	nmental	-0.31	-0.17	-1.14	-0.35	-0.41	-0.32	-0.26	-0.44	-0.44	-0.35	-0.40	-0.38	-0.36	-0.40	-0.36	-0.26	-0.30	-0.30	-0.32	-0.26	-0.26	-0.21
Comprehensive Enviro Indexes (Avera		-0.	24	-1.14				-0.	31								-0.:	32					-0.21
Comprehensive Enviro Indexes/per MW (each		-0.32	-4.16	-5.37	-6.73	-4.65	-3.80	-8.66	-7.08	-12.22	-9.72	-4.00	-38.00	-36.00	-40.00	-36.00	-26.00	-36.00	-30.00	-32.00	-26.00	-26.00	-70.00
Comprehensive Enviro Indexes/per MW (T Generation)		-2.:	24	-5.37				-7.	11								-32	.00					-70.00
*: For convenience sa	ıke, it is 1	,000 ti	imes for comparison.																				

 Table
 Environmental Indicators for the Different Types of Power Generation Plants


(Source: JICA Survey Team)

(Source: JICA Survey Team)

11. Drafting PDMP

The generation development plans and transmission development plans are summarized in the figure below.

Transmission Dev. Plan	Year 2018-20	Year 2021-25	Year 2026-30	Year 2031-35	Year 2036-40					
Trans. For Power Plant	Implementation of projects to co	nnect the new hydropower plants and th	e new gas-fired thermal power plants in t	he central and south to the main & regior	nal system.					
Construction of 400 kV Main System	Lauca - Waco Kungo - Belem do Huambo	- Lubango								
	Cambutasu - Gabela	a - Nova Biopio - Lubango 🛛 🔪								
		Lubango - Cahama	\Rightarrow							
Enhancement of 220 kV System	To enhance the 220 kV regional	To enhance the 220 kV regional system, mainly in Luanda, Benguela region								
Two circuits of the backbone line to	The following steps will be nece	The following steps will be necessary to eliminate operational restrictions, improve reliability, and avoid overload during an accident of an existing circuit of a transmission line: add one transmission								
secure N-1 criteria	line in parallel for the backbone	in parallel for the backbone line to make two circuits.								

Figure Summary of Generation Development Plans & Transmission Development Plans

The Project for Power Development Master Plan in the Republic of Angola Final Report

Figure Project Map toward 2040

12. Advice to MINEA, RNT, PRODEL, ENDE and IRSEA on their Action Plans for the Power Development Master Plan

The following table summarizes Angolan action plans for the Power Development Master Plan.

	Table Action Than	Action Plan in Detail								
Target	Item	Action Plan in Detail								
Action plans	Establishment of an	Establishment of the Institute of Power Development Planning								
related to	organization to	(IPDP) <tentative name=""></tentative>								
maintenance of	formulate the PDMP									
the Power	Revising the PDMP on	Ongoing revision of the Power Demand Forecast								
Master Plan	an ongoing basis	Collection of necessary data such as economic indicators								
		Collection of demand data and improve accumulation methods								
		Sounding out customers								
		Ongoing revision of the Generation Development Plans								
		> Review of fuel procurement plans								
		> Collection of the latest technical information on hydropower &								
		thermal power								
		Ongoing study on occupancy hydropower potential								
		Maintaining the Best Generation Mix								
		Ongoing revision of the Transmission Development Plan								
		> Ongoing analysis of the power supply-and-demand imbalance								
		by region								
		Review of transmission facility specifications								
		Review of power flow analyses								
Action plans	Company Operation &	> Deployment and reflection of the PDMP in the medium-term								
related to the	Project management	plans of different entities								
execution of	Management and	> Improvement of the tariff system								
development	reform of fund	> Study on how to use foreign loans								
projects	procurement	> Study on how to introduce private sector funds								
Others	Reform of dispatching	➢ Introduction of SCADA								
	organization	Reform of central and regional dispatching organizations								

Table Action Plans for the Power Development Master Plan

TableSchedule of Action Plans for the PDMP

	1401	e Demeat				
		2018-'20	2021-'25	2026-'30	2031-'35	2036-'40
Establishment of Organization to Formulate PDPM	MINEA RNT PRODEL ENDE	Establishment o IPDP				
Revision of PDPM	MINEA/IPDP		▼	▼	▼	▼
 Acton on improve accuracy of Power Demand Forecast Organizing and 	RNT ENDE	Design &introdu SCADA	ction of	Efficient accumula	tion and analysis of data	
accumulating information ♦Hearing to customers			Enhancement of	customer hearing system; Co	ntinuation of hearing	
Revision of study on occupancy hydropower potential			•	V	•	•
Formulation of mid-term plan	RNT PRODEL ENDE		Rev	iew of the mid-term plan yea	r by year	
Design of electricity tariff structure	IRSEA	Tariff structure design	until the start of liberalization at the latest			
Institution design for IPP entry > Concession system, PPA system etc.	IRSEA	Institution desig for IPP entry	until the start of liberalization at the latest			
Renovation of load dispatching organization > Reform of load dispatching offices > Introduction of SCADA	RNT PRODEL	Reform of lo dispatching of Introduction of S	fices			

Chapter 1 Outline of the Survey

1.1 Background of Survey

The economy of the Republic of Angola (hereinafter "Angola") has grown steadily since the end of the civil war in 2002, achieving an average economic growth rate of 10.7% from 2002 to 2013. Under a long-term development policy (Vision 2025) and a development plan spanning from 2013 to 2017 ("National Development Plan"; NDP 2013-2017) formulated by the Government of Angola, the country seeks to achieve sustainable economic growth by diversifying its industries and reducing its excessive dependence on oil revenues.

NDP 2013-2017 designates the power sector as one of seven important sectors in Angola. Though power infrastructure destroyed during the civil war is rapidly being restored, progress is impeded by the following problems: a low electricity rate of about 5 kW/kWh versus a supply cost of about 40 kWh/kWh; a vulnerable power system dependent on hydropower generation with seasonal fluctuation (caused by drought), a system accounting for about 60% of total electricity generation; a low electrification rate of about 30% nationwide on average; transmission and distribution loss of 55% or higher (technical losses: 15%; non-technical losses 40%); and a low fee collection rate due to a lack of electric meters installed.

The Ministry of Energy and Water Affairs (hereinafter MINEA), the responsible policymaking body for the power sector, has formulated a "National Power Security Strategy and Policy" (NESSP 2011) and assigned top priority to formulating frameworks and policies for power sector reform, introducing PPP, and promoting power development (including gas-combined cycle power plant, hydropower plant), grid development, and renewable energy development. In order to realize these reforms, MINEA has formulated an "Electricity Sector Transformation Program" (PTSE) that clarifies the actions to be tackled in four phases from 2010 to 2025 step by step. PTSE targets an increase in the electricity access rate from 30% to 60% and the development of power facility capacity from 2,120 MW to 8,742 MW by 2025.

In order to promote PTSE, MINEA plays a role in encompassing the individual plans made by each public company, namely, the National Electricity Transportation Company (hereinafter "RNT"), Public Electricity Production Company (hereinafter "PRODEL"), and National Electricity Distribution Company (hereinafter "ENDE"), into a series of power development master plans. MINEA, however, has never formulated a comprehensive power development master plan based on highly accurate demand forecasts or Long Run Marginal Cost (LRMC) forecasts factoring in various conditions such as long-term production facilities. For stable power supply in Angola, it will be necessary to develop a power supply and grid system in line with power development master plans based on statistical data and scientific analysis. The formulation of such a master plan is an urgent issue.

Under these circumstances, the Angolan side asked the Japanese side to cooperate in the formulation of a long-term power development master plan up to the year 2040, in the expectation of benefiting from Japan's experience, knowledge, and technology in the power sector.

1.2 Purpose of the Survey

1.2.1 Purpose

The purpose of this Survey is to produce a master plan for the generation and transmission development of the whole of Angola up to the year 2040, and thereby contribute to the smooth implementation of power development to enable a stable power supply for the country. The outcomes of this survey are as follows:

- ➢ To formulate a comprehensive power development master plan (2018-2040) encompassing nationwide generation development plans and transmission development plans.
- To promote sufficient understanding of the master plan by related organizations (MINEA, RNT, PRODEL, ENDE) and build up the capacity of related organization staffs to formulate and revise power development master plans.

1.2.2 Implementing Organizations of the Partner Country

Competent Authority: The Ministry of Energy and Water Affairs (MINEA)

Department: National Directorate of Electricity Energy (hereinafter "DNEE")

Implementing Organizations: National Electricity Transportation Company (RNT), Public Electricity Production Company (PRODEL), National Electricity Distribution Company, (ENDE), Instituto Regulador dos Serviços de Electricidate e Água (hereinafter "IRSEA")

1.3 Activities

(1) Preparations at home and Discussion and Consultation on the Inception Report

- > To collect relevant data and information and examine them
- ➤ To make the Inception Report
- To discuss and consult on the content of the Inception Report with the Government of Angola and the relevant organizations. And to confirm the demarcation of responsibility among the government, the implementing organization and JICA missions

(2) Review of the current situation in the power sector

- To review the current situation in the power sector (policy and strategy, legal and regulatory framework, power sector structure, and national development plans)
- > To review the recent power sector development
- > To review the current power demand and supply
- > To review cooperation by development partners, including donors, and commercial activity by private sector partners
- To review the Intended Nationally Determined Contributions (INDC) relating to the power sector in Angola

(3) **Power demand forecast**

- ➤ To formulate power demand forecasts toward the year 2040 with sensitivity analysis, including the following:
- > demand forecast at the national level (and regional level if data are available)
- > sector-wise forecasts and impacts by major development projects/plans
- daily load curves and load profiles

(4) Analysis on primary energy sources for generation development

- ➤ To analyze the potential of primary energy sources in Angola such as hydro, renewable, natural gas and oil
- > To organize information on the primary energy facilities to be developed to promote generation development

(5) Formulation of a generation development plan based on an optimal power generation mix

- ➤ To analyze the current generation facilities
- > To analyze the existing power development projects
- ➤ To formulate a long-term optimal generation development plan toward the year 2040 with sensitivity analysis, including the following:
 - ✓ To analyze the generation planning database, including latest technical and cost data
 - ✓ To prepare several development scenarios such as a base demand case, high demand case, etc.
 - \checkmark To conduct sensitivity analysis
 - ✓ To estimate the amounts of GHG (Greenhouse Gas) emission for the respective development scenarios

(6) Study on optimization of the transmission system development plan

> To analyze the existing transmission facilities

- To analyze the latest system development strategies and plans prepared by MINEA, including the following:
 - \checkmark To analyze the existing development strategies and projects
 - ✓ To analyze the update cost and technical data for the existing facilities
 - ✓ To analyze the transmission interconnection corridors with neighboring countries such as the Democratic Republic of the Congo (hereinafter "DR Congo"), Namibia, Zambia
- > To conduct power flow analysis
- > To select appropriate software for power system analysis
- > To examine the reduction of transmission loss
- > To formulate transmission development plans toward the year 2040

(7) Review of the framework and implementation of private investment

- To review the policy/strategy, legal and regulatory framework, and procedures for private investment in the power sector
- > To review the current status of private investment and identify bottlenecks

(8) Formulation of a long-term investment plan

- > To undertake an economic and financial analysis of the implementation of the proposed development plans
- > To review and update the existing investment plan up to the year 2025
- ➤ To formulate a long-term investment plan up to the year 2040 integrated with generation development plans and transmission development plans

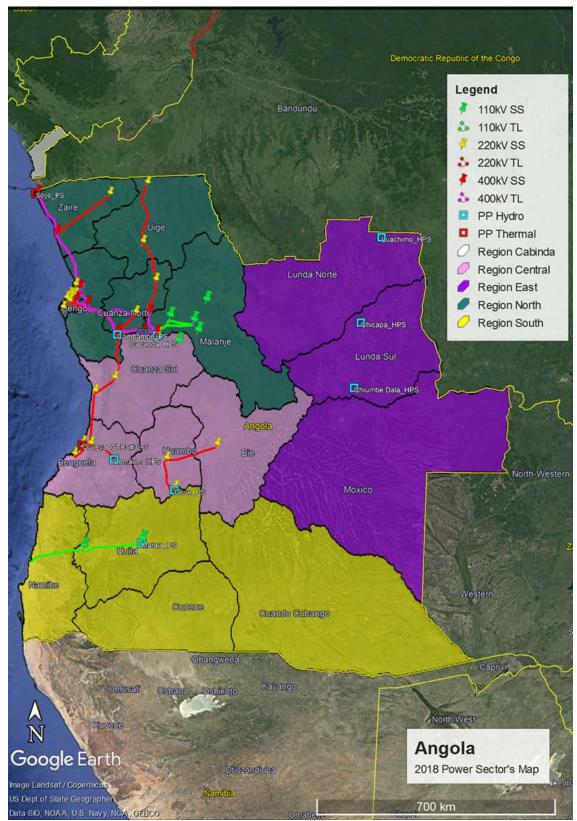
(9) Economic and financial analysis

- To analyze the financial aspects of RNT, PRODEL, ENDE, including the present tariff levels, cost structures, and borrowing capacities of RNT, PRODEL, and ENDE
- To formulate financial strategies
- > To analyze the financial sustainability of RNT, PRODEL, and ENDE
- > To recommend an optimal financial strategy

(10) Environmental and social considerations

- > To analyze the legal and regulatory frameworks for environmental and social considerations
- > To identify the potential impacts associated with environmental and social issues in the updated plan and propose the possible mitigation measures based on Strategic Environmental Assessment (SEA)

(11) Drafting the Master Plan


- > To draft comprehensive master plans toward the year 2040 integrating the above analysis
- > To advise the action plans of MINEA, RNT, PRODEL, ENDE, and IRSEA

(12) Capacity building

- To conduct technical transfer to MINEA, RNT, PRODEL, ENDE, and IRSEA via workshops and on-the-job training
- > To conduct relevant training in Japan

Chapter 2 Review of the Current Situation in the Power Sector

2.1 Location of Angola

2.2 Country overview

2.2.1 Social situation

Angola occupies an area of 1,246,700 km2 (approximately triple the area of Japan) in the Western region of southern Africa with a coastline extending more than 1,600 km along the Atlantic Ocean. The country has land borders to the East with the Democratic Republic of Congo and Republic of Zambia, to the North with the Democratic Republic of the Congo, and to the South with the Republic of Namibia.

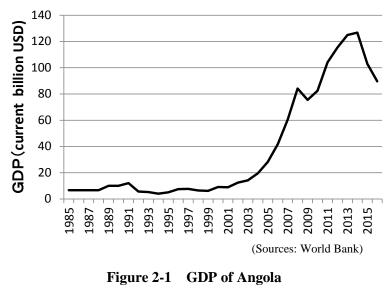
Although Angola is located in a tropical zone in the southern hemisphere, a confluence of three factors results in a climate uncharacteristic of the region: the orography in the countryside, the cold Benguela current along the South coast, and the Namib desert to the southeast of the territory.

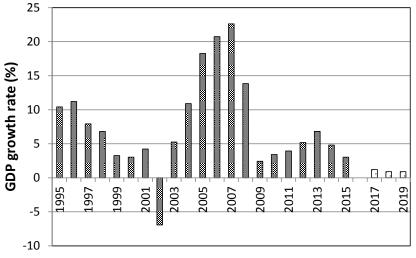
The climate in Angola essentially contrasts between dry, hot conditions characterized by low precipitation along the coast from May to August and humid conditions characterized by milder temperatures with more abundant rainfall in the interior from October to April.

Angola has a total population of about 25,900,000 living in 18 provinces. Luanda is the most densely occupied province, accounting for 27% of the national population, followed by Huila (10%), Benguela and Huambo (8% each), Cuanza Sul (7%), and Bié and Uige (6% each). The populations of these seven provinces account for 72% of the total population of the country.

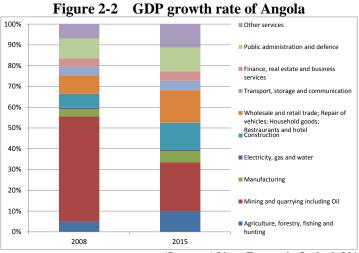
Province	s of Angola
1. Bengo	10. Huíla
2. Benguela	11. Luanda
3. Bié	12. Lunda-Norte
4. Cabinda	13. Lunda-Sul
5. Cuando Cubango	14. Malange
6. Kwanza-Norte	15. Moxico
7. Kwanza-Sul	16. Namibe
8. Cunene	17. Uige
9. Huambo	18. Zaire

2.2.2 Economic condition


Figure 2-1 and 2-2 respectively show the historical records of Angola's GDP and GDP growth rate.


Angola's long-standing civil war from the independence of 1975 severely exhausted the country. From the end of the civil war in 2002, however, abundant mineral resources such as oil and diamonds helped Angola achieve high economic growth, especially from 2004 to 2008, mainly through the development of export industries of these resources. The country's GDP had reached 103 Billion USD as of 2015.

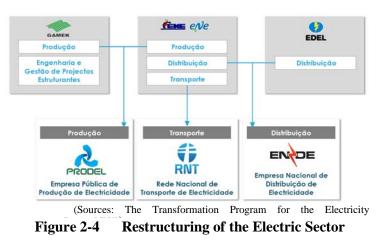
In recent years, however, declining oil prices have hit the Angolan economy severely. Economic growth has been stagnant and the GDP growth rate dropped to almost zero in 2016.


Figure 2-3 shows the sectoral GDP. As seen, the economy is largely made up of mining industries including that for oil, a factor that leaves the economic structure vulnerable to shifts in prices for international resources such as oil.

Encouraged by Angola's high potential for agriculture and fishery, the government has formulated a national development plan to curb the economic downturn by reducing its reliance on the oil industry while promoting other industries and diversifying their industry structure. The government is promoting the power sector under the development plan and struggling to achieve power sector reforms. Activities to liberalize the power generation sector and power distribution are ongoing.

(Source: World Bank)

(Source: African Economic Outlook 2017; AfDB, OECD, UNDP) **Figure 2-3 GDP of Angola by sector**


2.3 Review of the current status of the power sector structure

The following chapters will describe the current status of the public companies involved in Angola's power sector. Prior to that, this chapter will outline the overall power sector, including the public power companies.

2.3.1 Electricity Sector Transformation Program (PTSE)

PTSE is a component of the Power Reform Support Program (PSRSP) conducted mainly by JICA and the African Development Bank (AfDB).

A PTSE roadmap on sector reform recommends the following based on a study the PTSE performed on an optimum model for the electricity market: a restructuring of the market into a classic single-buyer model, an unbundling of the power utilities into Generation, Transmission and Distribution core activities, the establishment of commercial contracts

among market participants, and amendments to the laws to improve the regulations and attract PPP. The study further proposed four (4) reform phases, each with specific deliverables:

- (i) Preparation Phase (2010-2013) for the design of a new market structure;
- (ii) Phase I (2014- 2017), a stabilization phase following the sector restructuring and unbundling of the power utilities;
- (iii) Phase II (2018-2021), transition to efficient operation with limited use of IPPs, mainly in RE using RE Feed-In tariffs;
- (iv) Phase III (2021-2025), partial liberalization of the power market with the introduction of the PPP and IPPs and limited concessions for the distribution system.

The transmission system, a natural monopoly, will remain a public sector entity. To improve rural access to electricity services and efficiency, the distribution system will be further unbundled into a total of 18 business units in 5 geographic regions.

2.3.2 Power sector organization after sector reform

(1) MINEA

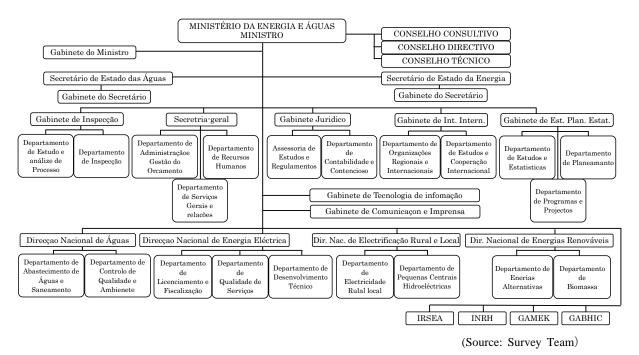
Figure 2-5 shows the organization chart of MINEA, the administrative agency handling Angola's electric power business. MINEA basically consists of four divisions: National Directorate of Water (DNA), National Directorate of Electric Energy (DNEE), National Directorate of Renewable Energies (DNER), and National Directorate of Rural and Local Electrification (DNERL). According to an interview with MINEA, its members also include the Gabinete de Abinete de Aproveintamento do Médio Kwanza (GAMEK), Gabinete Para a Administração da Bacia Hidroeléctrica do Cunene (GABHIC), and Instituto Regulador dos Seviços de e de Água (IRSEA).

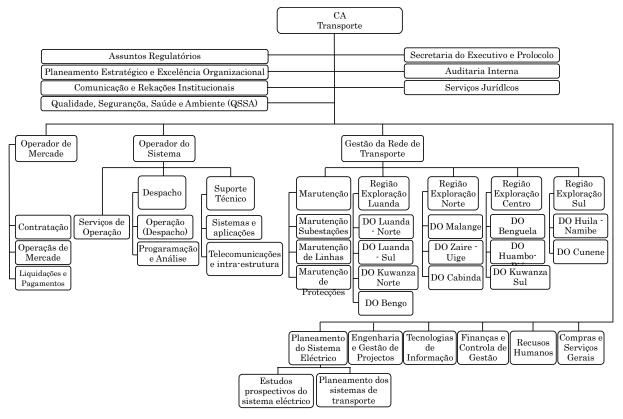
MINEA is charged with the tasks of proposing, formulating, managing, executing, and controlling the Government's policy in the areas of energy, water, and sanitation. Amongst its responsibilities, the Ministry must propose and promote the execution of the following Energy and Water policies: establish clear strategies to exploit all energy resources in reasonable ways that ensure their sustainable development; plan and promote the national policy on electrification; foster research in its domains; create the necessary legislation to rule the sector's activities, etc. DNEE occupies an important position among MINEA's organizations as the department in charge of electricity policy. DNEE is a planning department that summarizes the electric power development plan submitted by the planning departments of ENDE, RNT, and PRODEL every year, examines the plan, and prepares a budget proposal based on it.

GAMEK, a putative division of MINEA, is responsible for the planning of large projects related to power supply and power transmission up to the start of their operations. Once the power generation facilities and transmission facilities are commissioned, they are respectively transferred to PRODEL and RNT and operated and maintained by the two public companies.

While DNEE indicates that the public companies prepare the development plans up to the point of completion, GAMEK is the organization that actually carries out the large development projects. As the definitions for large-scale projects are themselves unclear, it can be difficult for third parties to discern which departments conduct the power development plans at their own initiative.

Apart from GAMEK, GABHIC, the organization in charge of hydropower plant development of the Cunene River in the south, also exists as an MINEA member.




Figure 2-5 MINEA's Organization Chart

(2) IRSEA

IRSEA was created by Presidential decree n° 4/2002 on the 12th of March. One of IRSEA's responsibilities is to establish rules for the functioning of the electric sector through regulations such as the following: Tariff Regulation, Access to Network and Interconnections Regulation, Quality of Service Regulation, Commercial Relationship Regulation, and Dispatching Regulation. The main objectives of IRSEA's mission are to guarantee energy supply, protect consumers, promote conditions favorable to the economic and financial balance of the public companies managing the electric system, foster competition, and ensure a non-discriminatory commercial environment. IRSEA functions as an advisor to MINEA on all matters related to the energy industry. All of the sector's public companies are subject to its regulations.

(3) **RNT**

RNT is a new public company charged with managing and planning the transmission network for the whole country, integrating all of the Very-High-Voltage Transmission assets of the former ENE. Figure 2-6 shows the organization chart of RNT as of July 2017.

(Source: Survey Team)

Figure 2-6 RNT organization chart

The diagram in Figure 2-7 outlines the transmission system of the RNT as of July 2017. The power grid consists of transmission facilities of 400 kV, 220 kV, 150 kV, 132 kV, 110 kV, and 60 kV.

The Angolan power grid is divided into three parts, namely, the northern grid, the central grid, and the southern grid. Among them, the northern grid supplies electricity to Bengo, Malanje, Cuanza Norte, Cuanza Sul, Uige, etc. centered on the capital city Luanda, a major demand area. This grid covers 80% of Angola's power supply utilizing large hydropower plants such as Capanda HPP and Cambambe HPP.

The construction work for interconnection between Alto Chingo of the northern grid and Nova Biopio-Quileva of the central grid was completed as of July 2017, effectively uniting the facility bases of the northern and central grids. The transmission system between Alto Chingo and Nova Biopio-Quileva has yet to be activated, however, as the Cambambe-Gabela line transmitting electricity from the northern hydropower plants to Alto Chingo is aging and functionally impaired. Cambambe-Gabela, a new 220 kV line, is currently under construction toward a planned commissioning in 2017. The northern-central system will be substantially united when this new line is completed.

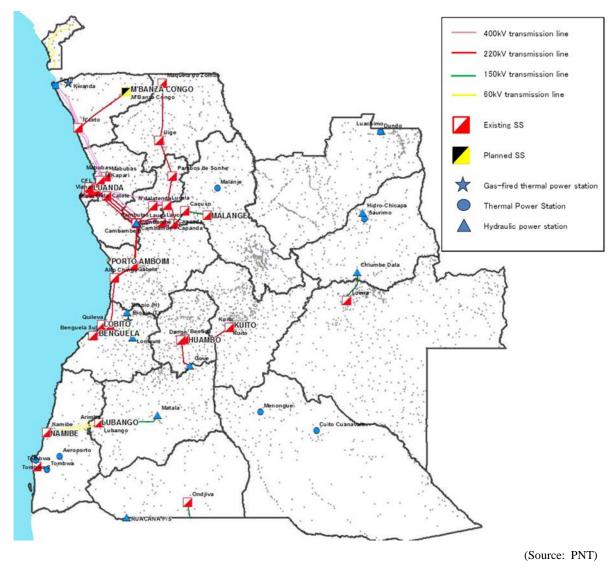
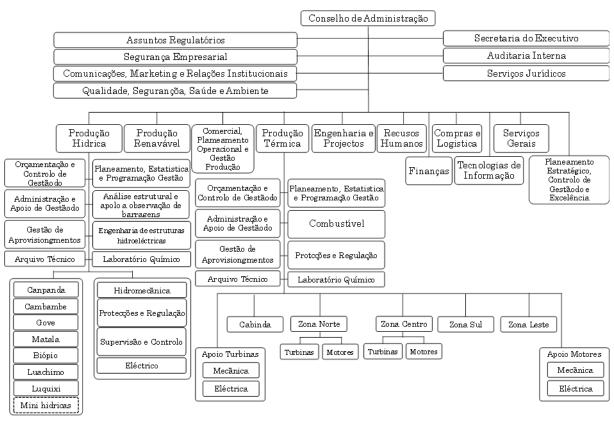



Figure 2-7 RNT grid map (as of July 2017)

(4) **PRODEL**

PRODEL, the Public Company for Electricity Production, is a new entity responsible for operating and maintaining the generation facilities belonging to the state. PRODEL integrates Capanda Hydropower plant, a facility previously under the responsibility of GAMEK, and the generation assets of ENE, the former National Company of Electricity.

The PRODEL organization chart is shown in Figure 2-8.

(Source: Survey Team)

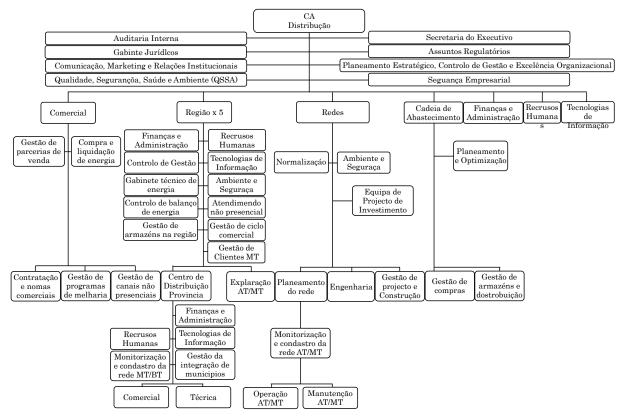
Figure 2-8 PRODEL organization chart

According to interviews with the public power companies, the installed capacity of the power plants in Angola as of June 2017 is as shown in Table 2-1. The total capacity of all plants combined is 3,055 MW, of which 2,560 MW is on grid. The public companies also indicate, however, that many of the thermal power plants are aging and some of them are suspending or reducing their outputs. Hence, the total plant output is surely smaller than the total nominal installed capacity.

By type of power source, hydropower plants and thermal power plants account for 56% and 42% of the installed capacity, respectively.

All of the thermal power plants are internal combustion engine power plants or GTs. Most of the fuel is diesel oil, and jet fuel is also used in part. On the other hand, large HPPs such as Capanda, Cambambe, and Cambambe-2 account for about 90% of the installed hydropower capacity.

Table2-1 Installed capacity of power plants in Angola (as of the end of June 2017)					
Туре	On grid (MW)	Off grid (MW)	Total (MW)	Composition (%)	
Hydropower	1,671.00	36.40	1,707.40	55.9%	
Thermal	839.30	457.40	1,296.70	42.4%	
Biomass	50.00	0.00	50.00	1.6%	
Mini hydro	0.00	0.94	0.94	0.0%	
Total	2,560.30	494.74	3,055.04	100.0%	


and of In no 2017)

(Source: Created by the Survey Team based on interviews with the public companies)

(5) **ENDE**

ENDE, the National Company for Electricity Distribution, is a new public company responsible for distributing electricity. ENDE integrates all of the activities and assets of the former EDEL and distributes the assets of the former ENE.

Figure 2-9 and Table 2-2 show the ENDE organization chart and a profile of the company, respectively.

(Source: Survey Team)

Figure 2-9 ENDE organization chart

Table2-2ENDE company pro	cofile
--------------------------	--------

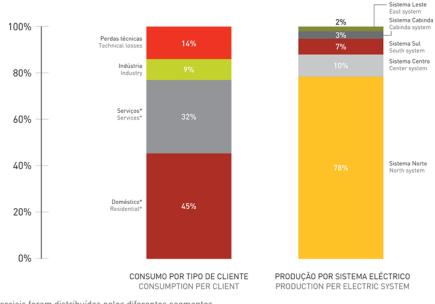
Number of employees	4,652 (as of July 2017)
Number of contracts	1,297,609 (as of July 2017)
Peak demand	1,252 MW (in December 2016)
Supplying Electricity	9,348 GWh (in 2016)
Electricity sales	49,495Million Kz (in 2016, including commercial losses)

(Source: ENDE RELATÓ DE BALANÇO DAS ACTIVIDADES)

2.4 Review of the current power demand and supply

2.4.1 Demand status

(1) **Energy consumption**


Energy consumption rose at an annual average growth rate of 15.5% between 2008 and 2014. As a result, Angolan energy consumption attributed to production reached an estimated 9.48 TWh in 2014, when disregarding suppressed demand and self-generation in the calculation.

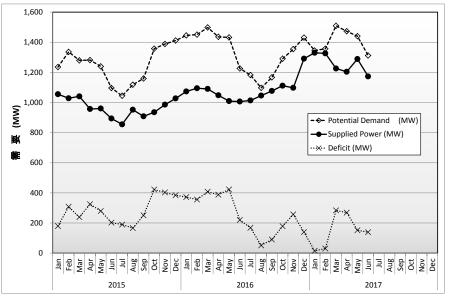
(Source: Long-Term Vision for the Angolan Power Sector: Angola Energia 2025)

Figure 2-10 Consumption energy

Energy consumption in Angola is mostly urban and residential. The residential sector demand accounts for an estimated 45% of total generation, followed by services (ca. 32%) and industry (ca. 9%).

*As perdas comerciais foram distribuídas pelos diferentes segmentos *Commercial losses were allocated to different segments.

(Source: Long-Term Vision for the Angolan Power Sector: Angola Energia 2025)


Figure 2-11 Consumption energy by sector and system

(2) Max. power demand

Figure 2-12 shows a record of the maximum power demand by month, where \diamondsuit indicates the potential demand taking into account load shedding, \bullet indicates the demand for which power was actually supplied, and \times indicates the supply deficit

The annual growth rate of the potential demand in the past two years was about 6% and that of the actual demand was about 12%.

As the potential demand has been steadily growing, the power supply capacity has been strengthened from 2016 to 2017. And shortages in supply are being resolved, so the actual demand growth has increased substantially.

(Source: Created by the Survey Team based on data provided by RNT)

Figure 2-12 Power demand in Angola

2.4.2 Power supply status

As mentioned earlier, the total installed capacity on grid is 2,560.30 MW as of June 2017.

However, the remaining shortage in the power supply (shown in Figure 2-12) leads to suspensions and reductions in output stemming from the aging of the power plants. At the same time, the power output of the hydropower plants is presumed to be decreasing due to shortages of river water.

Nonetheless, the commissioning of new power plants has been ongoing from 2016 to 2017 and the power supply is being steadily strengthened.

Plant Name	Туре	Installed Cap. (MW)	Commissioning Date	
Cambambe 2	Hydropower	700	2016	
Lauca unit 1	Hydropower	340	Jul 21,2017	
Soyo CCGT (partially)	CCGT	125	Aug, 2017	

 Table2-3
 Power plants commissioned in 2016 & 2017

2.5 Review of cooperation by donors and activities by the private sector

2.5.1 Cooperation by donors

(1) African Development Bank

The donor most actively engaged in power sector activities in Angola is the African Development Bank. The bank also played a leading role in the power sector reform implemented in 2014.

The bank is currently focusing on technical assistance related to the power distribution sector and promoting the implementation of the following four FS.

- ✓ Fixed Asset Register Project
- ✓ Technical Loss Reduction Program
- ✓ Non-technical Loss Reduction Program
- ✓ Transmission Lines Program

(2) US Embassy

Under the direction of the Bureau of Energy Resources in the US Department of State, the US government is implementing technical assistance mainly for RNT from 2016 to 2017. The assistance focuses on the formulation of an interconnected transmission line plan encompassing the northern, central and southern grids, which as of now have yet to be interconnected.

Other than that, the US government is advancing a GT introduction program to establish emergency power supplies mainly in the central and south power system.

2.5.2 Activity by the private sector

(1) **IPP**

As mentioned earlier, the Angolan government announced that full-fledged IPP entry and the introduction of PPP will be implemented after 2021. IPPs operating small-scale diesel power plants as off-grid power plants are in place even now, but they are limited in number.

(2) **PPP**

The Angolan PPP law of 02/2011 was published on the 14th of March with the goal of attracting private sector investment in Angola. The law seeks to achieve its goal by defining general rules for the overall operation of public-private partnerships from the initial stages to adjudication and subsequent follow-up of the implemented projects.

The PPP law was to have been complemented by a set of regulations to make it function properly. This never came to be, however, and the law has never been effectively applied to this date. With the new General Electricity Act and Private Participation in the Electric Sector Program coming into action, it will be important for Angola to have all of the necessary mechanisms to successfully implement PPPs.

(3) **Others**

Currently, the major private activities in Angola are engineering, procurement, and construction (EPC). Following are several examples:

- ✓ Cambambe HPP : Odebrecht, Alstom, Voith, Semence
- ✓ LaucaHPP : Odebrecht
- ✓ Laúca-Huambo transmission line : CMEC (China Machinery Engineering Corporation)
- ✓ Soyo : CMEC (China Machinery Engineering Corporation), GE
- ✓ Soyo 2 lotto : AE energy, GE

As a Japanese participant, Sumitomo Corporation has signed an MOU with the Angolan government to build a diesel power plant utilizing diesel generators produced by a Japanese manufacturer.

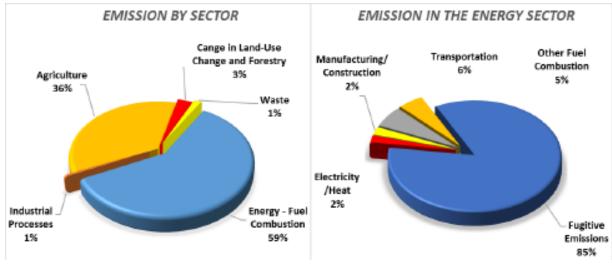
2.6 Review of the Intended Nationally Determined Contributions (INDCs) relating to the power sector in Angola

A draft of Angola's Intended Nationally Determined Contribution (INDC) was published in December 2015. The contents can be outlined as follows:

(1) **Reduction target**

Angola plans to reduce GHG emissions by up to 35% unconditionally by 2030 as compared to the Business As Usual (BAU) scenario (base year 2005). And in a conditional mitigation scenario, the country is expected to be capable of reducing emissions by an additional 15% below the BAU emission levels by 2030. In achieving its unconditional and conditional targets, Angola expects to reduce its emissions trajectory by nearly 50% below the BAU scenario by 2030 at an overall cost of over 14.7billion USD.

In light of Angola's extreme vulnerability to Climate Change impacts in key economic sectors, the Angolan INDC also includes priority adaptation actions that will enable a strengthening of the resilience of the country towards the attainment of the Long-Term Strategy for the Development of Angola (2025).


(2) Base year period and baseline data

The year 2005 is used as the reference year.

Figure 2-13 shows GHG emissions by sector in Angola for the year 2005. According to this, GHG emissions from the fuel combustion of the energy sector accounted for the majority of the total (occupancy rate: 59%).

The next largest contributors were emissions from agriculture, from change in land-use, and from forestry sectors.

The figure also shows the emission amount in the energy sector. The contribution of fugitive emissions in the energy sector is very hitgh, accounting for 85% of the total.

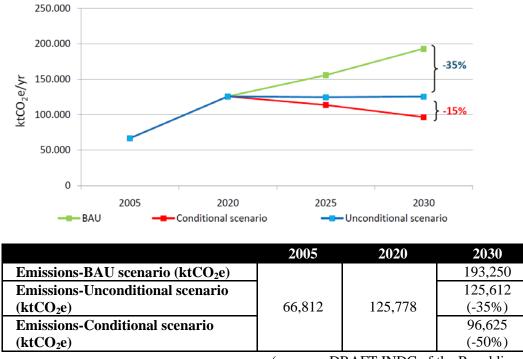

(source : DRAFT INDC of the Republic of Angola)

Figure 2-13 Baseline structure (2005) of GHG emissions in Angola by sector and emissions in the energy sector

(3) **Reference scenario without mitigation policies**

Therefore, the country is committed to stabilizing its emissions by reducing GHG emissions by up to 50% below the BAU emission levels by 2030 through unconditional and conditional actions targeting the following sectors:

- ✓ Power generation from renewable sources
- ✓ Reforestation.

Projection of GHG emissions in 2030

(source : DRAFT INDC of the Republic of Angola)

Figure 2-14 Baseline scenario and projections of unconditional and conditional mitigation scenarios in Angola

(4) **Outline of mitigation**

An unconditional countermeasure is an ongoing project in which funding has been fully identified. The following three projects are specified as efforts in the power sector.

- > Repowering of Cambambe I Hydroelectric Power Plant
- Cambambe Hydroelectric Second Power Plant
- Tombwa Wind Farm

A conditional countermeasure is a project that will be implemented after its performance is analyzed. MINEA has summarized the list of potential countermeasure project candidates in the power sector. The outline is as follows

- ➢ 681 MW for wind energy projects,
- ➢ 438 MWfor solar energy projects
- ➢ 640 MW for biomass projects, and
- ➢ 6,732 MW hydroelectric projects

2.7 Some issues faced by the Angola power sector

Based on the review of the current status, the Survey Team will point out a number of issues facing the Angolan power sector.

2.7.1 Issues in term of the organization

(1) Entity in charge of the generation development plan

As plans stand, MINEA is to proceed with the power development plan in the following stages:

- ✓ First, ENDE implements the power demand assumption.
- ✓ Based on that, PRODEL formulates a generation development plan.
- ✓ Based on the above assumption and plan, the RNT formulates a transmission development plan.
- \checkmark DNEE summarizes the foregoing plans in a draft budget plan for the country.

It seems, however, that PRODEL, the company responsible for the generation development plan, does not share this recognition. PRODEL's view of the process may stem from GAMEK's role as the organization actually in charge of large-scale power development and PRODEL's inability to actually become a responsible company.

After the Survey Team formulates the power development master plan in this work, the Angolan entities need to roll up the plan every year.

Hence, the technology for formulating the master plan in this study will also be transferred. This is a major problem with the organization, as it remains unclear whether the technology should be transferred to GAMEK or PRODEL.

(2) **Insufficient accumulation of data**

As the state-run power utilities were integrated and horizontally separated into three (3) public power companies only fairly recently, in 2015, none of them have accumulated or integrated extensive data as of this year, 2017.

While the data predating the reorganization has been handed over to the three public companies, much of the data was found to be inconsistent at the stage of compiling.

In the future, the Survey Team strongly recommends that MINEA and the headquarters of each public company clearly decide data collection policies and concentrate the following data mainly in their headquarters.

- ✓ Nationwide hourly demand data
- ✓ Operational records for all power plants
- ✓ Hydraulic data (river flow data, reservoir operation data, discharge data, etc.)
- \checkmark Fuel usage records, etc.

2.7.2 Issues related to electric power system

(1) Excessive introduction of diesel & GT generators

Many diesel and GT generators are introduced in the Angolan power system, mainly in local substations. Ostensibly they have been installed to stabilize the system voltage at peak demand times, but they seem to be mainly operated to compensate for supply shortages. They tend to be operated in a high load factor as a result.

As described later, diesel or GT generation has economic merit if the power is generated in a low load factor. The operation of plants of these types for such long periods is likely to result in high generation costs.

(2) **Dispatching center**

The dispatching center office of Angolan power system is attached to the Camama substation. Currently, this office might have failed to make detailed dispatch for the power plants because the power output of each power station cannot be monitored. For that reason, it is particularly problematic that dispatching the peak power plants for peak demand have not been made smoothly. In order to improve the reliability of the electric power system in the future, it is necessary to change the operating policy of power system and to innovate on facilities in the dispatching systems.

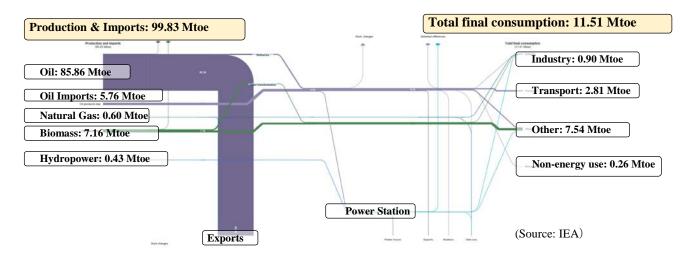
(3) **Toll collection system**

It is said that the current transmission and distribution loss of Angola is about 55% and the technical loss is presumed to be about 15%. That is, about 40% is non-technical loss. According to AfDB the vast majority of nontechnical losses are nonpayment of fees. It seems that the collecting rate of condominium, multi-tenant buildings is low in particular. In the future, measures to introduce prepaid cards system such as South Africa will be promoted.

2.7.3 Issues in terms of power policy

(1) **Barriers to private entry**

As mentioned above, PTSE is to promote private entry into the power sector from 2021, but detailed supplementary provisions are not planned. For that reason, IPP entrants are currently negotiating with the government individually, and seem to be developing according to the judgment of government respondents. Preparation for an early legal system is needed for the first year of entry into the private sector in 2021.


Chapter 3 Primary Energy Analysis for Power Development

3.1 General energy condition in Angola

3.1.1 Primary energy flow analysis

Angola is the second largest oil-producing country in Africa, after Nigeria. The confirmed crude oil reserves of Angola total 12.7 billion barrels (2014, BP statistics) and the production volume totals 177.2 million barrels/day (2015, JOGMEC). The confirmed natural gas reserve totals 9.7 trillion cubic feet (2014, Cedigaz) and commercial production totals 29.7 billion cubic feet (2014, OECD / IEA).

Figure 3-1 shows most of the primary energy flow. Most of the oil produced in the country is exported. Most of the natural gas produced (oil-associated natural gas), meanwhile, is reintroduced into oil fields or incinerated, as the country lacks liquefaction plants and equipment for transporting natural gas. As such, only a small amount of the natural gas is effectively used.

As the flow shows, none of the benefits of oil and natural gas reach the general public.

Figure 3-1 Primary energy flow in Angola

(1) Consumption of oil products

Figure 3-2 shows the transition in the consumption of oil products in Angola. Consumption has rapidly increased since 2003 after the end of the civil war. The increases in the consumption of middle distillates such as kerosene, jet fuel, and diesel have been especially rapid. This supports of the assumption that fuel consumption is increasing in transportation and commerce.

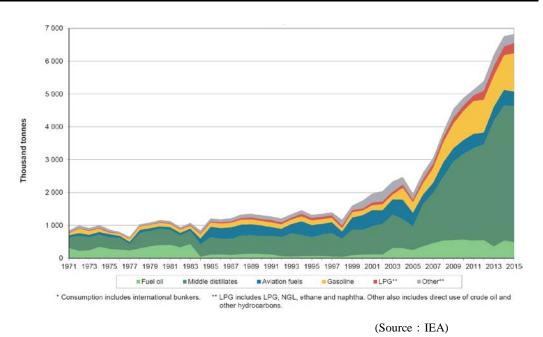
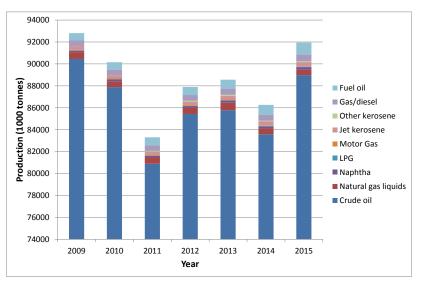



Figure 3-2 Consumption of oil products in Angola (consumption includes international bunker)

(2) **Production of oil products**

Figure 3-3 shows the transition in the production of oil products in Angola. The most abundantly produced oil product is clearly crude oil.

Crude oil production dropped to its lowest level in 2011. Then, it climbed back up to about 89 million tonnes in 2015.

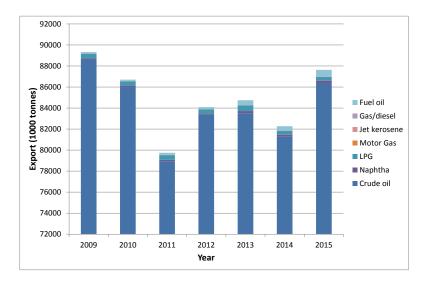
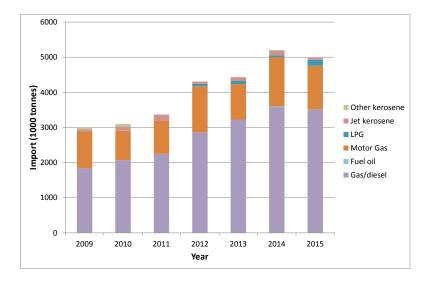

(Souce : IEA)

Figure 3-3 Oil production in Angola

(3) **Import of oil products**


Figure 3-4 and 3-5 respectively show the transitions in the amounts of oil products imported and exported to and from Angola. Domestically produced crude oil makes up the most of the exports, leaving very little left over to send to Angola's domestic refineries.

On the other hand, diesel oil and gasoline make up more than 90% of the imports, and their import levels are increasing. These figures show the Angolan "distortion" wherein Angola, the leading oil producer of Africa, imports secondary oil products.

(Source : IEA)

Figure 3-4 Exported oil production from Angola

(Source : IEA)

Figure 3-5 Imported oil production into Angola

(4) **Refined oil products**

Figure 3-6 shows the transition in the amount of refined oil produced at domestic refineries. The amount is gradually increasing, but a failure of the domestic refineries in keeping up with domestic consumption has led to an increase in oil product imports.

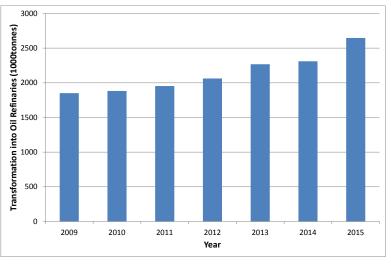
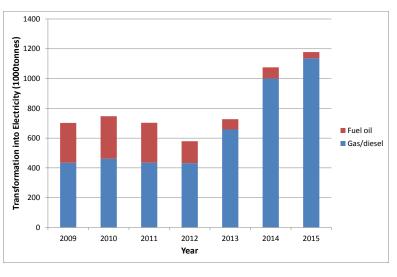



Figure 3-6 Refined oil production in Angola

(5) **Converted oil products for power generation in Angola**

Figure 3-7 shows the transition in converted oil products for power generation in Angola. The conversion amount is dramatically increasing and the oil product used for fuel is shifting from heavy oil to lighter oil.

(Source : IEA)

Figure 3-7 Converted oil products for power production in Angola

3.2 The potential of primary energy

For the analysis of the potential of primary energy in Angola, we confirmed the potentials of large hydro, oil, natural gas, and renewable energy.

3.2.1 Large hydropower

Angola has one of the highest potentials for hydropower among the countries of Africa. According to the Atlas and National Strategy for New Renewable Energies, the potential for hydropower is 18 GW, 86% of which is made up by the Kwanza River, Cunene River, Catumbela River, and Queve River Basin. Figure 3-8 shows the hydropower potential throughout Angola.

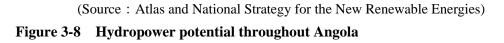
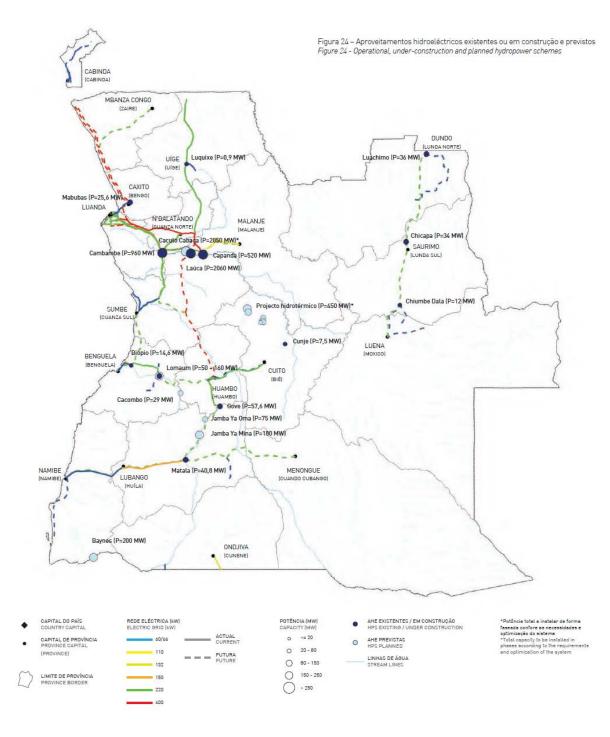



Table 3-1 lists Angola's new large hydropower plants, and Figure 3-9 shows the locations of existing/planned hydroelectric power plants in Energia 2025. According to our team's interview survey, however, the planned projects on the list have been reviewed by MINEA and GAMEK. The latest information is shown in Chapter 6.

			Capacity	Energy	Project Cost
No.	Name	River Name	[MW]	[GWh/year]	Mil \$
1	Carianga	CUANZA	381	1557	1295
2	Bembeze	CUANZA	260	1075	768
3	Zenzo 1	CUANZA	460	2680	1206
4	Zenzo 2	CUANZA	114	695	623
5	TÚMULO DO CAÇADOR	CUANZA	453	2759	1041
6	QUISSONDE	CUANZA	121	773	838
7	Salamba	CUANZA	48	194	324
8	QUISSUCA	LONGA	121	589	567
9	Cuteca	LONGA	203	873	734
10	CAFULA	QUEVE	403	1919	1121
11	UTIUNDUMBO	QUEVE	169	743	406
12	DALA	QUEVE	360	1686	1010
13	CAPUNDA	QUEVE	283	1200	741
14	BALALUNGA	QUEVE	217	1013	475
15	MUCUNDI	CUBANGO	74	368	538
16	CAPITONGO	CATUMBELA	41	249	239
17	CALENGUE	CATUMBELA	190	1136	471
18	CALINDO	CATUMBELA	58	340	187

Table 3-1 List of new large hydropower plants

(Source : Energia 2025)

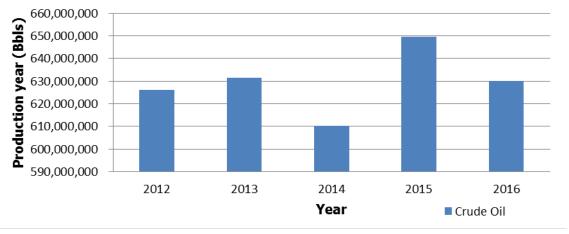

(Source : Angola Energia 2025)

Figure 3-9 Locations of existing/planned hydroelectric power plants

3.2.2 Oil

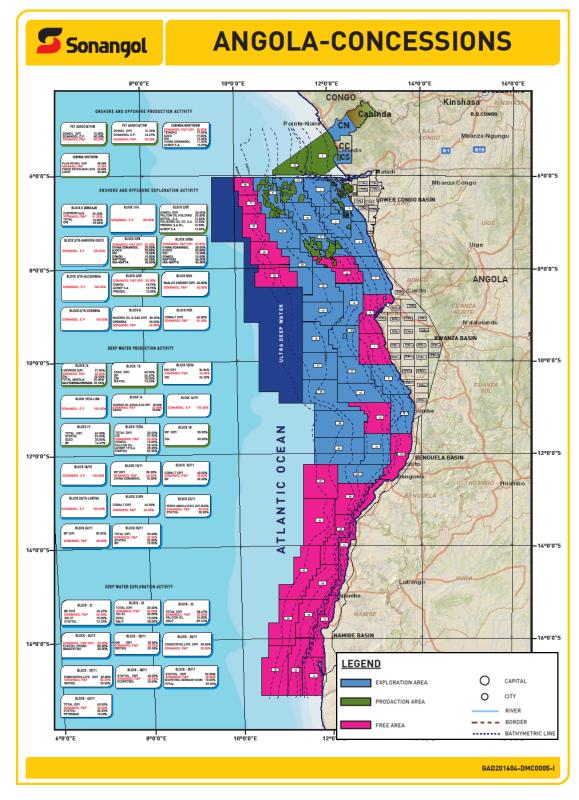

Oil resources in Angola are managed by the state-owned company Sonangol, and development is undertaken jointly with international oil companies (BP, Chevron, ENI, ExxonMobil, Petrobras, Statoil, Total, etc.). The Confirmed crude oil reserves in Angola total 12.7 billion barrels (BP statistics at the end of 2014) and production (January-November 2015 average) comes to 17,720,000 barrels/day (JOGMEC). The regions of oil production and development are located mainly in coastal areas from the northern to central part of the country, and only partially on land. Specific points include the coastal state of Cabinda and Zaire province.

Figure 3-10 plots the crude oil production results in Angola. The diagram in Figure 3-11 gives an overview of oil development in the country.

(Source : Sonangol Annual Report : 2012 - 2016)

Figure 3-10 Crude oil production results in Angola (2012~2016)

(Source : Sonangol web page)

Figure 3-11 Oil development in Angola

3.2.3 Natural gas

Confirmed natural gas reserves in Angola total 9.7 trillion cubic feet (2014, Cedigaz) and the commercial production volume comes to 29.7 billion cubic feet (2014, OECD / IEA). Most of the natural gas produced is accompanying gas produced through oil drilling and is treated as backfill or flare and left unused due to the high cost of use.

In recent years, however, the demand for natural gas has been increasing worldwide due to the lower greenhouse gas emissions of natural gas products compared to oil products and technological advances enabling more stable transportation of natural gas. The effective use of natural gas has been considered in Angola.

The state-owned company Sonangol E.P. manages natural gas production in Angola and is constructing a pipeline to transport accompanying natural gas generated from oil production facilities to the natural gas plant. As of 2017, existing pipeline connects Blocks 15, 17, and 18 and new pipelines connecting Blocks 0 and 14 are under construction. According to Angola LNG, the natural gas plant is designed to produce up to 1.1 billion ft^3/day or 5.2 million tons/year.

Angola has a plan to use natural gas as fuel for gas-fired thermal plants such as Soyo 1 CCGT (under construction as of 2017) and Soyo 2 CCGT (planned). Soyo 1 started operating in Unit 1 in July 2017 using diesel oil in a simple cycle. It will switch to gas generation once it is connected with the LNG plant in Soyo port Terminal via pipeline,

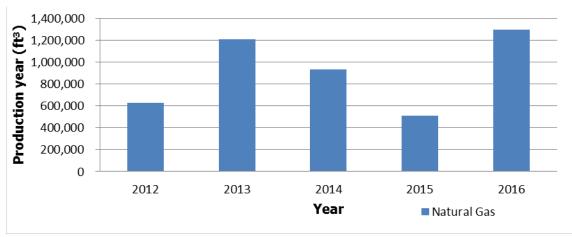


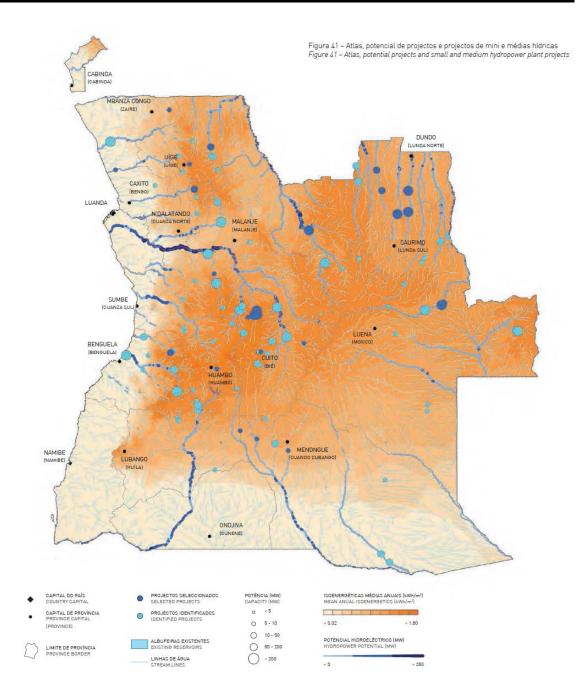
Figure 3-12 shows the amounts of natural gas produced in Angola.

(Source : Sonangol Annual Report 2012 - 2016) Figure 3-12 Amounts of natural gas produced in Angola

3.2.4 Renewable energy

Figure 3-13 shows the total capacity of projects considered for each form of renewable energy (RE). As of 2017, high costs have curtailed any efforts to install RE plants. The total potential for RE,

however, is about 20.0 GW. The Angolan government has set concrete targets for renewable energy installs by 2025 and selected a priority project in Angola Energia 2025.


The details on each form of RE are summarized in (1) to (4).

(Source : Atlas and National Strategy for New Renewable Energies, 2015) Figure 3-13 The total capacity of projects considered for each RE

(1) Small and middle hydropower

Figure 3-14 shows the potential diagram of medium- and small-sized hydropower generation.

According to the Atlas and National Strategy for New Renewable Energies, the potential of small-middle size hydropower plat projects totals 600 MW and the currently installed capacity totals 60 MW. Future plans on Angola Energia 2025 call for the installation of 30 MW of off-grid small hydropower plants, 70 MW of on-grid small hydropower plants, and 270 MW of medium-sized hydropower plants, in total, by 2025.

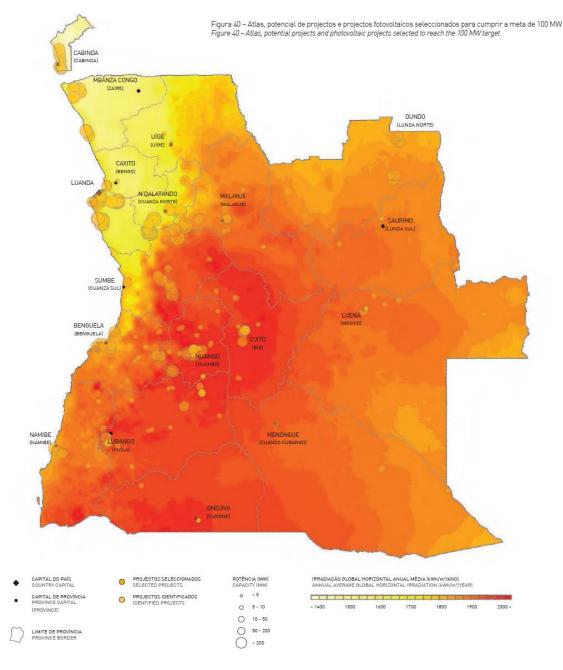

(Source : Angola Energia 2025)

Figure 3-14 the medium-small hydropower potential diagram in Angola

(2) Solar energy

The diagram in Figure 3-15 gives an overview of the RE potential in Angola. According to the Atlas and National Strategy for New Renewable Energies, Angola has a high solar resource potential, with an annual average global horizontal radiation ranging between 1.350 and 2.070 kWh/m²/year and photovoltaic power (PV) potential totaling 17.3 GW, with PV projects already under study. PV constitutes the largest and most uniformly distributed renewable resource of the country.

When considering the installation of PV generation as an alternative to diesel power generation, however, the need to install batteries has pushed up costs to levels prohibitive enough to postpone installation. In the eastern (Huambo, Kuito, etc.) and southern regions, meanwhile, the installation of medium- and large-scale PV generation facilities has clear cost advantages over diesel power generation. The PV installation target is 100 MW by 2025.

(Source: Angola Energia 2025)

Figure 3-15 Solar energy potential in Angola

(3) Wind energy

Figure 3-15 shows the Wind Energy potential diagram in Angola. According to Angola Energia 2025, locations with high potential for wind energy can be found at higher altitudes along a North-South axis of the country and in the southwest region, where the wind reaches high average speeds exceeding 6 meters per second at 80 meters above ground level. The wind resource in the rest of the country ranges between 3.5 and 5.5 meters per second, offering limited potential for electricity generation at competitive costs.

The 12 survey sites have a total capacity of 3.9 GW, and the capacity for wind generation with high economic efficiency at high-priority sites totals 0.6 GW. Looking ahead, plans are in place to introduce 100 MW of wind energy capacity by 2025. There are three main projects: the Tombwa wind project, a project in Cuanza Norte, and a project in Lubango.

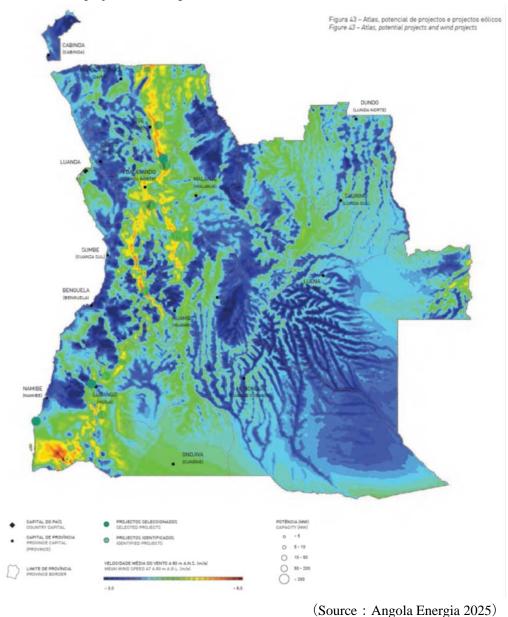
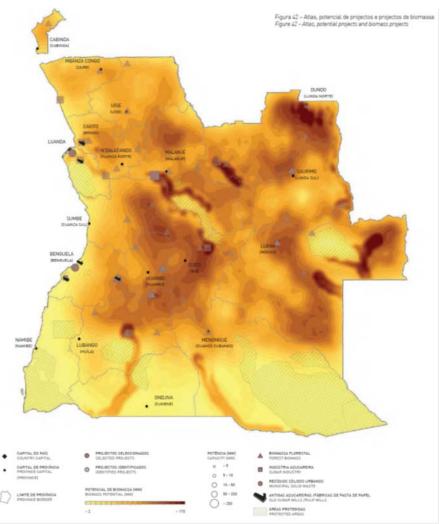
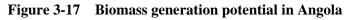



Figure 3-16 Wind Energy potential in Angola


(4) **Biomass**

The diagram in Figure 3-17 gives an overview of the biomass generation potential in Angola. Biomass resources in the country include forest resources and agricultural residues (mainly sugarcane). The sites with the highest potential for these resources are located in the central region (Huambo, Bie, Benguela) and eastern region (Moxico, Luanda-Sul, Luanda - Norte). The total capacity of biomass energy potential in Angola is 4 GW, and the total capacity of studied projects is 1.5 GW.

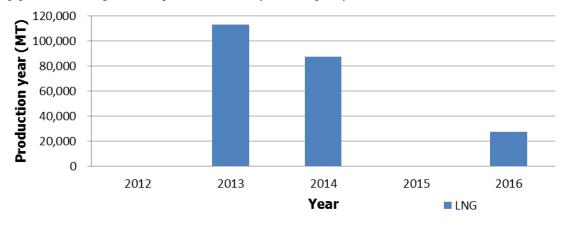
According to Angola Energia 2025, plans are in place to install 500 MW of biomass power generation capacity by 2025. The main projects mentioned are to generate 300 MW from hydrothermal power (hydrothermal) using existing forest resources, 100 MW from Malange in the Biocom Project using sugarcane production, and 50 MW from the incineration of solid waste discharged from cities represented by Luanda City and Benguela City.

(Source : Angola Energia 2025)

3.2.5 Coal

Coal reserves have not been investigated in Angola and the country has no experience in the use of coal.

Hence, there is no coal-related data as of 2017.


3.3 Condition of energy supply facilities

3.3.1 Liquefied natural gas (LNG) plant

Figure 3-18 shows the actual production of LNG from 2012 to 2016.

Angola LNG, the only LNG plant in Angola, is located in Soyo Province of Zair State.

The plant is connected with an oil production plant and sends the associated gas it produces to a refinery by pipeline. The Angola LNG production facility has a capacity of $34 \text{ MSm}^3 / \text{d}$.

(Source : Sonangol Annual Report 2012 - 2016)

Figure 3-18 Actual production of LNG from 2012 to 2016

The LNG now produced is primarily exported. The future LNG utilization scenario in Angola Energia 2025 has two components:

· Export the LNG to remote countries by large LNG carriers

• Transport the LNG to Lobito, Namibe, etc. and re-gasify it to produce fuel for a new type of large thermal power plant.

Incidentally, it is unclear whether the plan is commensurate with the cost generated by the regasification after the production of LNG using energy.

3.3.2 Oil refinery plant

Angola currently owns only one oil refining facility in the capital city of Luanda, but the refinery capacity is insufficient for oil production. So that, Angola, therefore relies on imports for more than 80% of its domestically consumption of oil products. To implove this situation, Sonangol has developed plans to build new refinery facility projects located in the central coastal city of Lobito, the State of Soyo in northern Zaire, and the coastal city of Namibe in the south.

Table 3-2 presents information on the existing/planned refinery facilities. The Lobito project was scheduled to start operation in 2018, but construction was halted in August 2016 due to a shortage of funds. The Soyo project, meanwhile, was launched, but the project never proceeded to the actual construction

stage. Construction for the Namibe project was started in July 2017 and is now underway.

On February 2018, Sonangol announced new plans to develop oil refining facilities in central Lobito and northern Cabinda province, along with an expansion plan for the existing Luanda Rifinery. Proposals accepted from domestic and foreigin companies under these plans are now being evaluated.

Sonangol has reported that it is targeting completion of a Lobito facility with a capacity of 200,000 bpd/day, the same level set in the previous plan, by 2022. Completion of a Cabinda facility with a smaller capacity is targeted for 2020.

In addition, an agreement with Italy's company ENI was already reached towards the end of last year for the execution of an expansion plan for the existing Luanda Rifinery. Production will be expanded from the present 57,000 bpd/day to 65,000 bpd/day by 2020 under that plan.

Refinery Name	Unit	Luanda	Lobito	Soyo	Namibe	Cabinda
Company		Sonarel	Sonaref →N/A	N/A	Sonaref	N/A
Operation Start	year	1958 →2020	2016(stop) →2022	N/A	N/A	2020
Cost	USD	N/A	8 billion →12 billion	N/A	12 billion	N/A
Capacity	bpd/day	57,000 →65,000	200,000	110,000	400,000	N/A

 Table 3-2
 Information on existing/planned refinery facilities

(Source : Sonangol Universo, and released information)

3.4 Price trends for each form of primary energy

In the study of the optimum power plan until 2040, the setting of the fuel cost is an important factor. When setting value from the perspective of a national economy, fuel costs are often based on international prices. Therefore, the team will investigate and consider costs based on prices in the international market.

The study refers to data from World Energy Outlook 2016 (WEO - 2016) published by the International Energy Agency (IEA) and World Bank (WB). Price fluctuations to the present and future forecasts up to 2040 are compared in three scenarios studied by the IEA.

The three scenarios in WEO-2016 are as follows:

- · New Policies Scenario
- · Current Policies Scenario
- · 450 Scenario

In the New Policies Scenario, the country's adopted targets under the Paris Agreement adopted by the 2015 United Nations Climate Change Conference (COP 21), an agreement mandating greenhouse gas reductions by almost all countries, are fully or partially achieved. The use of fossil fuels is suppressed and the installation of renewable energy and other forms of clean energy is promoted.

In the current policy scenario, the Paris Agreement is not implemented or renegotiated, and the use of fossil fuels does not change from the present.

The 450 Scenario is a scenario for a decarbonized society proposed by the IEA's WEO. In this scenario, target of the average temperature is devised as an energy composition that can suppress a temperature rise of 2 °C from the Industrial Revolution era.

3.4.1 Crude oil

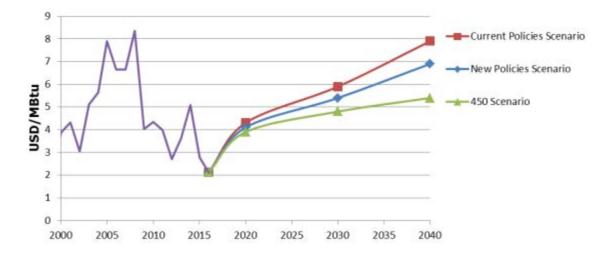
Figure 3-19 shows the changes in crude oil prices in the international market since 2000 and the future development in each scenario. The future oil price trend is expected to rise in every case. The current price is \$ 40/Barrel due to the discount from 2012.

However, a strong demand for crude oil in emerging markets is expected to remain in the future in all three scenarios. Crude oil is currently being purchased at low prices from OPEC member countries, but purchases at high prices from non-OPEC countries will increase. Hence, oil prices continue to edge gradually higher and ultimately reach \$ 80/Barrel in 2020 in every case.

In all three scenarios, the price fluctuation after 2020 will continue to rise with the ongoing development of oil resources and a decrease of inexpensive, high quality so-called "sweet spots" necessitating further moves into areas with expensive and low-quality oil.

Conversely, the 450 Scenario foresees lower prices accompanying reduced crude oil demand and price maintenance supported by a stronger push toward a decarbonized society, compared the other scenarios.

Figure 3-19 Changes in crude oil prices in the international market


3.4.2 Natural gas

Natural gas has no international common price like crude oil, but there is a fixed price for each region, i.e., (1) USA, (2) Europe, (3) China, and (4) Japan. The (1) US price is based on the cost to transport and sell domestically produced products by pipeline, the prices in (2) Europe and (3) China are based on the

cost of importing raw gas in pipelines and processing it into LNG, and the price in (4) Japan is based on the import price for only LNG.

In the case of Angola, natural gas is produced domestically and will be connected to domestic consumption areas by pipeline in the future. The condition is similar in the (1) USA, so we refer to forecast fluctuation in both countries.

Figure 3-20 shows the forecast for price fluctuations of natural gas from 2000 up to 2040. Because the price of natural gas is correlated with the crude oil price, it is expected to rise to around 4/MBtu against strong demand up to 2020, as with crude oil price. In the case of natural gas, however, the demand for LNG will increase worldwide in the future as a cleaner fuel with lower rates of CO₂ emission. Hence, the price of natural gas will continue to rise for both domestic consumption and exports in each scenario.

*****US price, tax excluded(Source: World Bank and IEA World Energy Outlook 2016)Figure 3-20Forecasted fluctuation of natural gas prices (2000 - 2040)

3.4.3 Selected fuel price for formulating the "Optimal Generation Mix"

Since Angola is also participating in the Paris Agreement, the team will adopt the New Policies Scenario base value as the fuel cost when considering the optimum power plan. Specific values for each fuel cost will be shown in the section on the power supply development plan.

3.5 Items to Prepare to Promote Power Development

When planning a power supply plan, especially a thermal power development plan, the fuel supply policy is important to consider. More specifically, the thermal power development plan must thoroughly consider the type of fuel to be used, the supplier of the fuel, the method for transporting it, and the equipment necessary for using it.

In this section we analyze and examine the options for thermal power plants in the optimum generation mix plan, the fuel(s) to be used in the plants, and the kinds of fuel supply facilities needed.

3.5.1 Options for Power Supply

In Chapter 6 we study power supply development plans in detail. As a result of examination, the following have been selected as available power supply options.

- Large hydropower plant
- > CCGT
- ≻ GT
- Renewable energy power (small hydropower plant, wind power, solar power, biomass, etc.)

The thermal power options in the power supply plan in Angola are CCGT and GT.

3.5.2 Options for Fuel, and Fuel Characteristics

Natural gas, LNG, LPG and diesel oil are the assumed options for fuel. The characteristics of each fuel are summarized in Table 3-3.

Fuel	Characteristics	2015 Price
Natural Gas	In Angola, natural gas is produced as an associated gas from oil fields.	
	Unless transportation costs are considered, the price per unit calorie is the cheapest. Therefore, application to mine-mouth power plants is economically advantageous.	Approx.
	Gas supply facilities such as gas pipelines are necessary when locating power plants near demand areas. The cost for these facilities will increase the cost of electricity generation overall.	1 cent/Mcal
	The CO ₂ emission factor of natural gas is about 20% lower than that of LPG. Hence, the use of natural gas is advantageous when considering CO ₂ emissions.	
LNG	LNG is liquefied natural gas by cooling. Angola has an LNG plant in Soyo.	
	> The price per unit calorie is almost the same as that for LPG. For application to thermal power plants, a large-scale LNG tank will be required near the power plants. The high cost for this type of facility will increase power generation cost overall.	Approx. 4 cents/Mcal

Table 3-3Fuel Characteristics

	The CO ₂ emission factor of LNG is about 20% lower than that of LPG. Therefore, the use of LNG is advantageous when considering CO ₂ emissions.				
LPG	 Besides being produced from associated gas in oil and gas fields, it is produced in the crude oil refinery process. The prime property coloring is similar to that of LNC 				
	The price per unit calorie is similar to that of LNG.				
	The fuel supply facilities are minimal, so the supply cost can be low.	Approx.			
	The thermal efficiency when applied to CCGT and GT is comparable to that of natural gas or LNG.	4 cents/Mcal			
	The unit of CO ₂ emissions is about 20% higher than natural gas and LNG				
Diesel oil	It may be referred to as light oil in Japan.				
	The price per unit calorie can be somewhat cheaper than or nearly equal to that of LNG. The thermal efficiency drops, however, so the cost of power generation rises.				
	The fuel supply facilities are minimal, so the supply cost can be low.	Approx.			
	When applied to CCGT and GT, the thermal efficiency drops significantly compared to that of natural gas, LNG, or LPG.	4 cents/Mcal			
	In addition, the CO ₂ emission factor is about 40% higher than that of natural gas and LNG. In view of the thermal efficiency during power generation, CO ₂ emissions will increase significantly.				

Diesel oil is used in most GT and diesel power plants in Angola. The extensive use of diesel oil is thought to be due to the government's practice of providing diesel oil to power plants free of charge or at low cost. As you can see from the table above, the adoption of diesel oil would be disadvantageous both in terms of CO_2 emissions and the national economy. It will be important to switch to LPG, LNG, and natural gas in the future.

3.5.3 Setting of Thermal Power Generation Planning Scenarios and Selection of Fuel

In this section we will set scenarios for the thermal power development plans and assume which fuels can be used most realistically when the scenarios are realized.

(1) Middle Demand Power Supply

< Basic Policy on Power Supply Development>

Mine-mouth power plants using natural gas are the most economical. => CCGT in Soyo is the most advantageous.

<Issues>

A relatively large power supply established in Soyo will be affected by the unilateral power flow from Soyo to Benguela (Soyo => Luanda => Benguela) in the structure of Angola's power system. This point could partly impede system stability.

- > This point also requires an excessive current flow leading to an increase in power transmission loss.
- The line between Soyo and Luanda has a current capacity of 400 kV 2200 MW (N 1 criteria) and can transmit only to two power plants of the Soyo CCGT (750 MW) class. If we are to build a third power plant, one more transmission line circuit will be required.

<Other information about Construction Costs: based on investigation in Japan>

Cost to Construct the Transmission Line: Approx. 1 millUSD/km

Cost to Construct the Gas Pipeline: 4 – 13 millUSD

Cost to Construct the LNG Tank: 100 – 150 millUSD/unit (Capacity 125,000m3).

FSRU (Floating Storage Regasification Unit): 250 – 330 millUSD (Capacity 140,000m3)

Cost to Construct the LPG Tank: 10-30 millUSD/unit (Capacity 20,000 m3).

< Prerequisites for Making the CCGT Development Scenario>

- > Development up to a second CCGT in Soyo is reasonable.
- Regarding development beyond a third CCGT, it would be necessary to add transmission lines to the demand areas Luanda and Benguela. The construction cost in that case would be likely to reach at least 300 mill USD/circuit.
- > Therefore, it will be necessary to compare the power generation near the demand site as well.
- ➢ In this case we can consider the supply of natural gas by a gas pipeline and supply of LNG after installation of the LNG tank and vaporization facility, etc.
- The cost of constructing a gas line pipeline is estimated to be at least 1,000 millUSD. Use devoted solely to power generation would also be burdensome, so joint use with other industries is considered a prerequisite.
- Regarding LNG supply, the preparation of two LNG tanks would cost up to 200 to 300 millUSD, which would be relatively inexpensive.
- While the FSRU would be more costly than an LNG tank, it would have the advantage of a short installation period.
- ➤ With the use of LPG, on the other hand, supply facilities would be very inexpensive. This is an option, given that the current LPG price is close to the LNG price. CO₂ emissions, however, would increase by about 20%.

< CCGT Development Scenario>

- ➤ In Soyo, the development of CCGTs for two power stations takes top priority. Development surpassing three power plants depends on the transmission line extension cost. But in view of system stability, we recommend CCGT construction near the demand site.
- Considering the increase in demand, especially in Benguela and the rest of the central area, developing CCGT in Lobito port in Benguela has definite merits.
- ➤ Furthermore, with the growth of demand in the central and southern parts, it would be meaningful not only to construct a CCGT at Lobito Port additionally, but also to develop a CCGT at Namibe Port in the southern part. If CCGT development in the southern part progresses thus and international interconnection with Namibia is developed, it may be possible to sell power to the SAPP in the future.
- Considering the above points, after placing priority on building two 750 MW class power plants in

Soyo, there is a plan to develop the subsequent CCGT at Lobito Port and Namibe Port.

< Fuel supply scenario>

- We recommend setting the following fuel supply scenario according to the above CCGT development scenario.
- > In Soyo, we continue to supply natural gas for the mine-mouth power plants.
- ➢ For the Lobito CCGT, we are preparing to supply LPG in the first step, and to supply LNG and switch from fuel to LNG in the second step, as soon as LNG supplying facilities are set up.

(2) **Peak Demand Power Supply**

< Basic Policy on Power Supply Development>

Mine-mouth power plants using natural gas are the most economical. => CCGT in Soyo is the most advantageous.

Better system stability can be expected, however, if the peak demand power supply is located near the demand site.

<Issues>

- With the installation of GT, the peak demand power supply, in Soyo, in addition to CCGT, the middle-demand power supply, the Angolan power system will generate an extremely unilateral current toward Soyo => Luanda => Benguela. This would be quite disadvantageous for the stability of the system.
- The dual installation above would also cause an excessive power flow leading to increased power transmission loss.
- The 400 kV line between Soyo and Luanda, however, has a current capacity of 2200 MW (N-1 criteria). If only two 750 MW class CCGTs are developed in Soyo, the margin of the transmission capacity would be about 700 MW. Given the sufficient room available, it would be possible to connect the GT of the output corresponding to the margin.

< GT Development Scenario>

- It would be rational from an economic viewpoint to develop GT capacity of about 700 MW as mine-mouth power plants in Soyo. As a prerequisite for development, however, control by a dispatching center to secure system stability would be necessary.
- For further development, it will be important to connect to backbone lines near demand areas such as Luanda and Benguela.
- Considering the above points, the development of several GTs as mine-mouth power plants in Soyo cannot be ruled out, though the scale of GT plant that can be developed would have to be limited.
- As peak demand power supply, it is assumed that many GTs are placed in the main substation near Luanda or Lobito port in Benguela. The GT placed at Lobito port is also thought to be combined into a CCGT, as this would be effective as a countermeasure in the event of rise in the middle demand above the peak demand level due to changes in the load factor, etc. in the near future.

< Fuel supply scenario>

We recommend setting the following fuel supply scenario according to the above GT development scenario.

- > In Soyo, we continue to supply natural gas for the GT.
- Regarding the GTs near the demand sites of Luanda and Benguela, it would be difficult to supply natural gas by gas pipeline. Hence, in both cases we are preparing to supply LPG.
- An LNG relay station will be installed in the future. If it becomes possible to supply vaporized gas in the pipeline from there, we will switch to LNG.

3.5.4 Facilities to Prepare for Power Development Promotion

Soyo CCGT, GT		Soyo is located near the existing oil field, and mine-mouth power plants can use natural gas produced from associated gas.
	۶	Construction of gas pipeline for the Soyo 1 power plant is already in progress. Operation is scheduled to start in 2018.
	\triangleright	It will be necessary to increase the current gas pipeline capacity.
	A	As the study focused beyond the fuel supply facilities themselves, it will be necessary to continue discussing the rationality of upgrading the transmission line to Luanda. It will also be necessary to consider the development of SCADA for power plant control.
Lobito CCGT, GT	\triangleright	In the first step, it will be necessary to improve the LPG supply facilities.
	A	It will be necessary to examine whether to import LPG or obtain it from a domestic refinery. When selecting procurement from a domestic refinery, it will be necessary to jointly consider reinforcement of the refinery with the relevant organizations.
	٨	In the second step, it will be necessary to develop supply facilities such as LNG tanks.
	>	It will be necessary to establish a supplier portfolio by examining the ratio of domestic LNG and imported LNG to be used.
Luanda GT	4	Basically, assume the use of LPG and improve the LPG supply equipment accordingly.
	٨	As a method for transportation to the LPG terminal, improved roads and railroads will also be required.
	À	Regarding the use of LNG, it will be necessary to raise the demand for an LNG relay station, including demand in other industries in the future.

All of the aforesaid matters relate to the Angolan energy master plan now being formulated, so we will keep track of the details of the plan as they evolve.

Chapter 4 Procedure for Formulating a Power Master Plan based on the Optimal Generation Mix ("The Best Mix")

4.1 Basic policy for an optimal generation mix

Before explaining the major components of the Power Development Master Plan such as the power demand forecast, generation development plan, and transmission development plan in the following chapters, we would like to confirm the procedure used to formulate the Master Plan in accordance with a policy for formulating a plan to obtain an optimal generation mix ("The Best Mix").

The policy for an optimal generation mix is the first to formulate an optimal generation development plan from the particular viewpoints of Angola and to establish the most effective transmission development plan based on the generation plan. As a precondition for planning, it goes without saying that a highly accurate power demand forecast must be obtained by analyzing the economic situation and future vision of the country.

What, then, are the "particular viewpoints" of Angola? The most important viewpoint for Angola is economic. For some countries, in contrast, it may be energy security. The prevention of global warming is another viewpoint of rising importance.

The following are important considerations for examining the optimum power plan:

- ✓ Economic matters (reduction of supply cost (generation cost + transmission cost))
- ✓ Supply reliability (annual LOLE, etc.)
- ✓ Energy security (stability of fuel supply, stability of fuel cost)
- Environmental and social considerations (environmental impact assessment, greenhouse gas emission, etc.)
- ✓ Feasibility (social environment, development lead time, funds, etc.)

4.2 Items to examine

4.2.1 Economic matters

In formulating an optimal power development master plan from the viewpoint of economic efficiency, we will generally consider the following.

- ✓ To study the composition ratio of a power supply with minimized power generation costs, including fixed costs such as capital costs and variable costs such as fuel costs. The study is generally carried out using an analysis method such as a screening method and demand-supply operation simulation software such as PDPAT.
- ✓ Once the optimal generation mix ratio is obtained, a more specific power generation project plan is prepared. The plan also specifies where power plants are to be located on the power grid.
- ✓ Based on the generation development plan, to formulate an additional transmission development plan for transferring electricity from power plants to demand sites as efficiently as possible. The additional plan is also implemented to examine the transmission construction and calculate the transmission costs.

When implementing such a study, it is the generation development plan that most affects the economics of the power plan. And this is the most important point. There are mainly two analysis methods, namely, the screening method and PDPAT.

(1) Screening method

Figure 4-1 shows an example of an analysis result by the screening method.

The screening method is <u>a method to obtain the required supply capacity of each power plant</u> and analyze the optimal generation mix based on the relationship between the annual facility utilization rate and annual generation expenditure, and the annual duration curve reflecting the utilization rate of each power

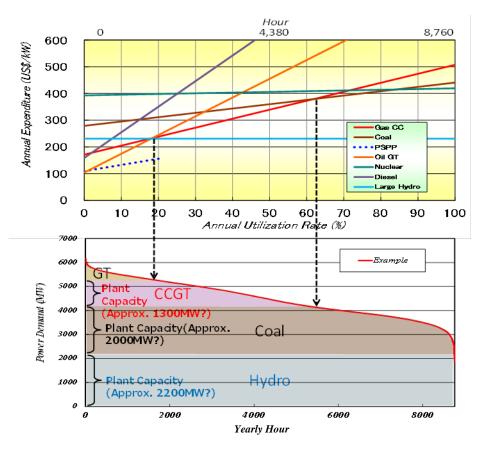
source at different costs,.

The upper figure shows annual expenses of each power supply. The Y intercept of the linear function indicates annual expenditure corresponding to fixed costs. The inclination indicates variable cost, mainly fuel cost. The lower figure shows the annual duration curve. In this example we focus only on hydropower, coal-fired thermal, CCGT, and Oil GT for simplification.

In this case, since hydropower plants can be generated at the lowest cost in the range of a facility utilization rate of 20% or more, the total power generation cost can be reduced by operating the hydropower plants at a high load factor. It is important to generate electricity with priority over other power supplies to cover power demand. In other words, it is important to operate hydropower plants to meet power demand in preference to other power sources.

Next, looking at coal-fired thermal power, we can see that the expenditure becomes cheaper at a utilization rate of 60% or more. To ensure that the load factor is at least 60% in operating the plants, we can improve the economic efficiency by installing the coal-fired thermal plant capacity sufficient to meet the demand of 60% or more of the annual occurrence probability. Incidentally, the demand, the basic part of the duration curve, is called the base demand, and the power supply that covers this is called the base power supply.

We can see, from the projection of the facility utilization rate of the base power supply to the duration curve, that the required installed capacity of the base power supply is about 4,200 MW. If hydropower plants with 2,200 MW capacity can be installed, it would be appropriate to introduce 2000 MW as coal-fired thermal power plants.


Considering the CCGT in the same way, it is economically advantageous to utilize a CCGT with a facility utilization rate of about 20% and 60%, so plants should meet the demand in an occurrence-probability range of between about 20% and 60% (middle demand). In this example, the installation of a CCGT with a capacity of about 1,300 MW is required.

In addition, it is advantageous for the Oil GT to meet the demand within an occurrence-probability range of about 20% or less (peak demand) because it is economically advantageous to use the Oil GT at a utilization rate of about 20% or less. In the example, the installation of plants with a capacity of only about 700 MW is required.

After the required installed capacity of each power source is obtained as described above, the optimal power supply ratio can be calculated based on the results. In the future generation development plan, the required installed capacity of each power supply will be examined with reference to the optimal power supply ratio.

Item	Required data	Note
For power demand forecast	Duration curve of power demand forecast	Hourly data from 8,760 hours of demand forecast
	Construction cost of each power type (USD/kW)	
For power supply	Heat efficiency (%)	
For power suppry	Annual expenditure rate (%)	Interest, Depreciation, O&M cost, etc.
	Fuel price (USD/kW)	

The data necessary for these studies are shown below.

(Sources: JICA Survey Team)

Figure 4-1 Example of a screening method

(2) **PDPAT**

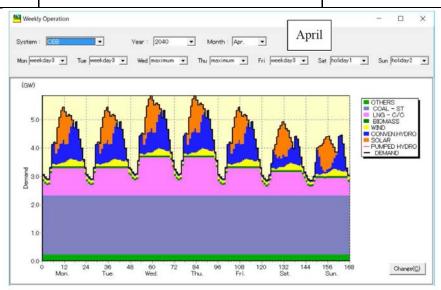
PDPAT (Power Development Planning Assist Tool) is a supply-and-demand operation simulation software application developed by Tokyo Electric Power Company (TEPCO). Supply-and-demand operation simulation software simulates how power plants should be dispatched to best meet the assumed daily demand.

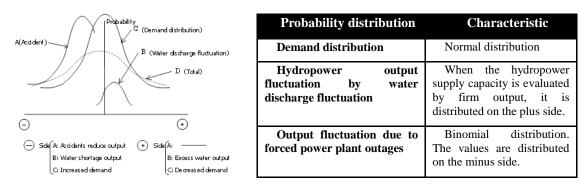
Figure 4-2 shows an example of an analysis of the power supply situation.

PDPAT simulation analysis can determine how power plants can be dispatched to minimize the total costs of the fuel used by the plants. The analysis outputs the total fuel cost as well as the total annual expenditure of the power plants. Since the cost of the entire power system can be obtained in a given year, the software can examine the optimal generation mix by comparing the annual power generation cost for each development scenario.

As mentioned above, PDPAT analyzes the economics of power generation by simulating the dispatch of power plants in scenarios closer to reality. As such, the following data are required.

Item	Required data	Note		
For power demand forecast	Duration curve of the power demand forecast	Hourly data from 8,760 hours of demand forecast		
For power supply	Construction cost for each power plant (USD/kW)			
	Heat rate curve of each power type			
	Annual expenditure rate (%)	Interest, Depreciation, O&M cost, etc.		
	Fuel price (USD/calorific value or volume)			
	Power plant specifications	Maximum output, Minimum output, etc.		
	Hydropower plant operational data	Monthly power generation, etc.		




Figure 4-2 An example of output from PDPAT

When PDPAT conducts an economic analysis for the optimal generation mix, it obtains the approximate proper power supply ratio by the screening method and lists a power plant construction plan based on the results. PDPAT usually prepares the Best Mix Plan using the listed data.

4.2.2 Supply reliability

Supply reliability is often expressed by LOLP (loss of load probability) and LOLE (loss of load expectation). LOLP is the probability that the supply capacity will be insufficient against the demand within a given period or year. LOLE is the expectation of when the condition will occur. These two variables are basically synonymous.

The probability distribution of LOLP is mainly obtained by synthesizing the following probability distribution.

Figure 4-3 Probability distribution synthesized into LOLP

Since LOLE is the expectation of when the supply shortage will occur based on this probability distribution, it can be expressed by the formula shown in Figure 4-4.

Where,

Pi: Probability of supply shortage

Hi: Time at which demand occurs when the supply capacity is insufficient.

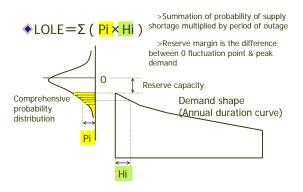


Figure 4-4 LOLE

From the experience of the Survey Team, we think it is appropriate to adopt a LOLE of 24 hours per year in emerging countries. That is to say, we aim for a power supply system that allows a total of one day of outage in a year.

Since the required supply capacity cannot be directly obtained from the supply reliability, we employ the concept of reserve margin rate. First, we obtain the relationship between LOLE and the supply reserve margin ratio. After determining the required reserve margin ratio based on the adopted supply reliability, we usually calculate the required total supply capacity from the reserve margin. We then formulate the power development master plan with the required supply capacity.

Reserve margin rate
$$=$$
 $\frac{\text{Supply Capacity} - \text{Demand}}{\text{Demand}}$

Figure 4-5 shows the stops taken to create the relationship between LOLE and the reserve margin ratio. The calculated LOLE basically corresponds to the reserve margin, a changing parameter. And by summarizing these data sets, we can then obtain the correlation diagram. As you can see, a large reserve margin is needed to build a power supply system with high supply reliability, i.e., a low LOLE.

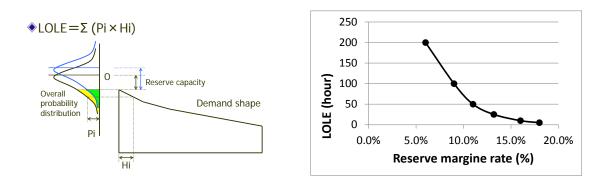


Figure 4-5 Relation between LOLE & the reserve margin rate

Since the required supply capacity can be calculated by the following equation, a power plan satisfying this capacity can be formulated.

Supply capacity = $(1 + \text{Reserve margin rate}) \times \text{Demand}$

Figure 4-6 shows an example of a formulated power supply plan. The blue line in this example plots the forecasted power demand. The power supply development plan, meanwhile, must satisfy the required supply capacity plotted by the red line, taking into account the reserve margin. This can be seen in the figure.

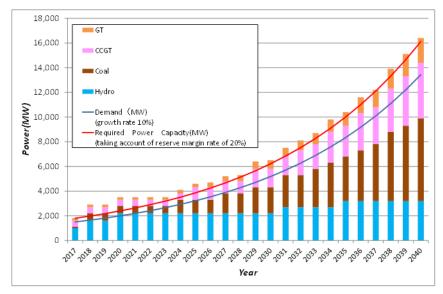


Figure 4-6 Required supply capacity and generation development plan (Example)

4.2.3 Energy security

When studying the plan for an optimal generation mix, considerations other than economy may sometimes be necessary. Energy security, for example, is an especially important consideration in countries not blessed with domestic resources, like Japan. The following points may be important to consider.

- ✓ Securing domestic energy
 - Development of domestic mineral resources (fossil fuel)
 - > Nuclear power development as long-term usable energy

- Development of hydropower
- > Development of solar power, wind power, geothermal power, biomass power, etc.
- ✓ Diversification of fossil fuel types; diversification of suppliers

In any case, many of the foregoing are ultimately decided by political judgments at high levels, so consistency with the national energy policies is important to ensure.

4.2.4 Environmental and social considerations

Environmental and social considerations are also important from viewpoints other than economic efficiency. Apart from the conventional EIA for each project, it has become increasingly important in recent years to evaluate the impact on global warming in each scenario in the overall power development master plan. This is why coal-fired thermal power plants, which are economically superior, are becoming difficult to introduce into master plans. Global environment issues take some degree of precedence.

In addition, many countries regard the use of renewable energies as important mitigations of global warming. The method by which these power supplies are to be incorporated into the power development master plan must be considered.

Consistency with national energy policies and INDC is important to ensure, as many of these problems are decided politically at very high levels.

4.3 Flow for formulating a power development master plan

Figure 4-7 shows a formulation procedure incorporating important items in the plan for an optimal generation mix described in the previous section. The power development master plan of Angola is also carried out according to this procedure.

The transmission development plan is greatly affected by the power generation scenario, especially the type of installed power plant and the location of the power plant in the national grid. Needless to say, optimization of the power transmission equipment must be studied for each scenario.

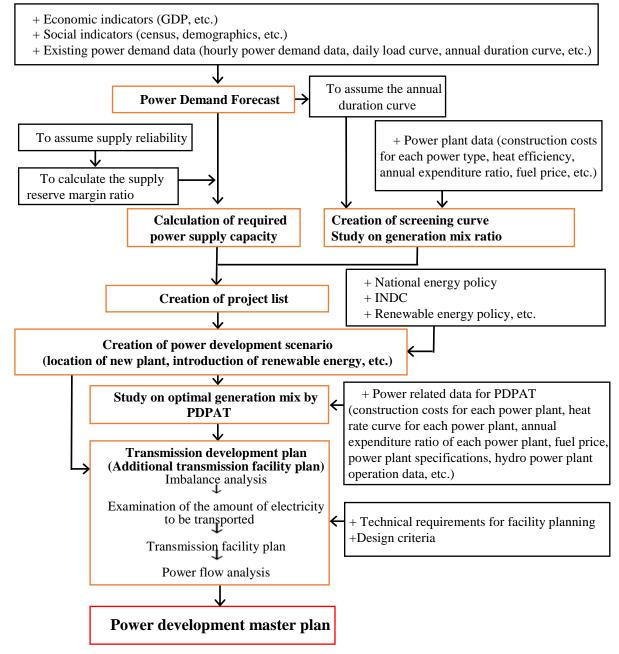
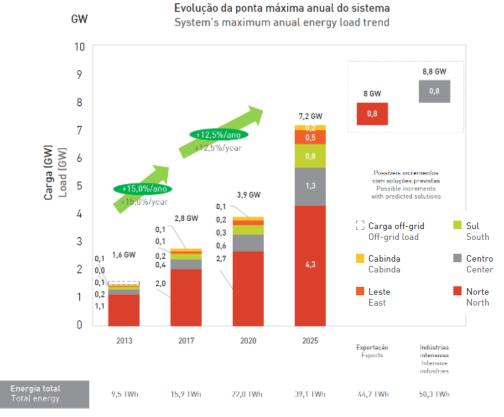


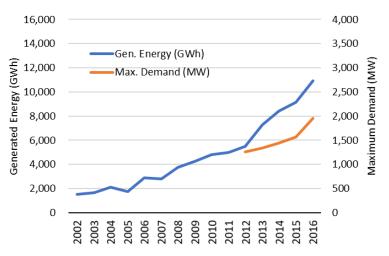
Figure 4-7 Flow for Formulating a Power Development Master Plan


Chapter 5 Power Demand Forecast

5.1 Power demand forecast in current plan and related data

5.1.1 Current power demand forecast

"Angola Energia 2025" describes officially the electricity demand forecast as shown in Figure 5-1. This power demand forecast is implemented in 2014 and forecasted power demand up to 2025.


Figure 5-2 shows the actual power demand records up to 2016. While the forecast assumed the annual maximum demand growth rate of 15 % from 2013 to 2017, the actual power demand (incl. latent demand) grew at a rate of 7 % - 25 % (an average of 13.3 %) from 2013 to 2016. In the event that the assumed growth rate is nearly equal to the actual rate, however, the prospect of the maximum electric power in 2017 is about 2.3 GW, falling about 0.5 GW below the forecasted value.

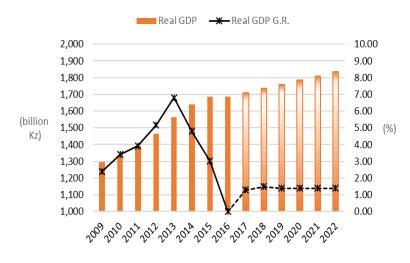
(Source: Angola Energia 2025)

Figure 5-1 Current Power Demand Forecast (annual maximum demand)

The mean growth rate of the generated energy before 2012 was about 10 %. Since 2012, the generated energy has increased rapidly at a mean growth rate of about 19 %. The maximum power demand increased by 500 MW (25 %) in the year 2016 alone.

(Source: Prepared by the JICA Survey Team based on the WB Data-base and Data from RNT, ENDE)

Figure 5-2 Actual records of power demand


5.1.2 Forecast of GDP and population growth

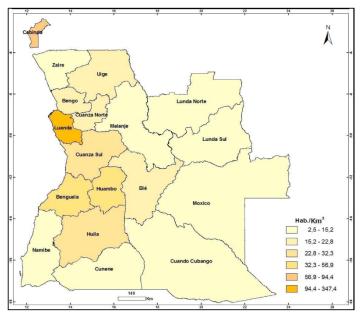
(1) Past records and forecast of GDP by IMF

Past records of the GDP (2010 Constant Price, local currency unit) are shown in Figure 5-3, based on WB Data and GDP estimates in the 2017 version from the IMF.

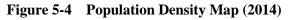
The Angolan economic structure depends on the oil sector. The real GDP in 2013 was 96.3 billion dollars, of which the oil sector accounted for about 40%. From 2010 to 2013, macroeconomic stability was restored and economic growth accelerated. In 2014, however, maintenance and restoration works in several oil fields brought crude oil production down to 1.66 million barrels from 1.8 million barrels the year before. As a result, the real GDP growth rate fell to 4.2% (IMF estimate) from 6.8% in the previous year.

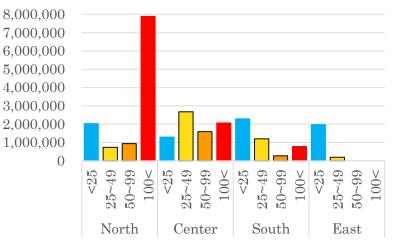
Furthermore, since the crude oil price plummeted from 100 US\$/bbl. in 2014 to 50 US\$/bbl. in 2015, the real GDP growth rate further decelerated to 3.0% in 2015 and 0.0% in 2016. According to estimates in the 2017 version from the IMF, the GDP is expected to grow at a rate of about 1.4% after 2017.

(Source: JICA Study Team prepared based on IMF Prospect)


Figure 5-3 Past records and forecast of real GDP


(2) **Population forecast**


The total population in Angola is 25.9 million people (2014) according to population statistics from INE (Instituto Nacional de Estatística). Luanda has the highest population density within the country, at 100 heads/km² throughout the province.


Six other provinces have municipal cities with population densities exceeding 100 heads/km²: Uige and Malanje in the northern region, Cuanza Sul, Benguela, and Huambo in the central region, and Huila in the southern region. None of the provinces in the eastern region have population densities at comparable levels.

The population density by region is shown in Figure 5-5. The population of the north is about 1.6 million, accounting for about half (45%) of the Angolan population.

(Source: Prepared by the JICA Survey Team based on population statistics 2014 (INE))

Figure 5-5Population Density Distribution by Region (2014)

The population forecast (2014-2050) in Angola by INE is shown in Figure 5-6. The population nationwide in 2016 was estimated to be about 27.5 million people and to have grown at a rate of 3%. The total population in 2040 is forecasted to be about 54.3 million people and the growth rate will decrease up to 2.5%.

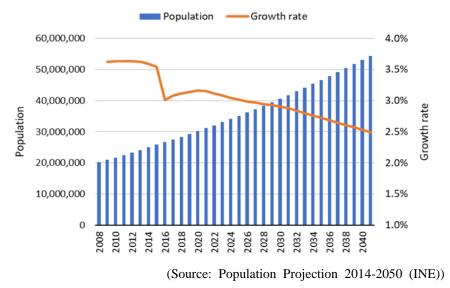
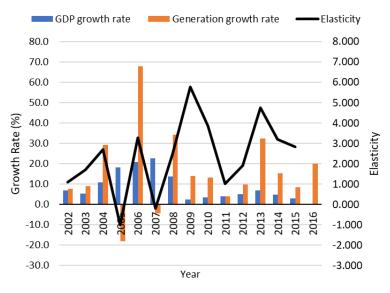
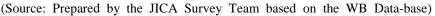




Figure 5-6 Population Forecast in Angola

(3) Relationship between GDP growth rate and generated energy growth rate

The annual growth rates of the GDP and electricity demand after 2002, when the civil war ended, are shown in Figure 5-7. There is no correlation whatsoever between the annual GDP growth rate and generated energy growth rate. The elasticity (generated energy growth rate / GDP growth rate) varies from -1.0 to 6.0, showing considerably larger variation versus the general elasticity value of 1.0 to 2.0 in other developing countries. As such, it would be inappropriate to assume generated energy demand based on the GDP growth rate.

Figure 5-7 Relationship between GDP Growth Rate and Generated Energy Growth Rate

(4) Changes in electrification rate

The changes in the electrification rate in Angola according to the WB data-base are shown in the table below. The development of large-scale generation facilities has not progressed since the civil war and the electrification rate has gradually decreased as the population grows.

The electrification rate is expected to begin to increase after 2016, however, as all units of Cambambe No. 2 (700 MW) were put into operation in 2016 and the transmission line network continues to expand. Angola Energia 2025 stipulates an electrification rate target of 60% by the end of 2025.

	Tuble 5.1 Transition of Electrification Rate											
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014		
Electrification Rate (%)	38.4	37.7	37.5	36.4	35.8	35.1	34.6	33.9	33.3	32.0		

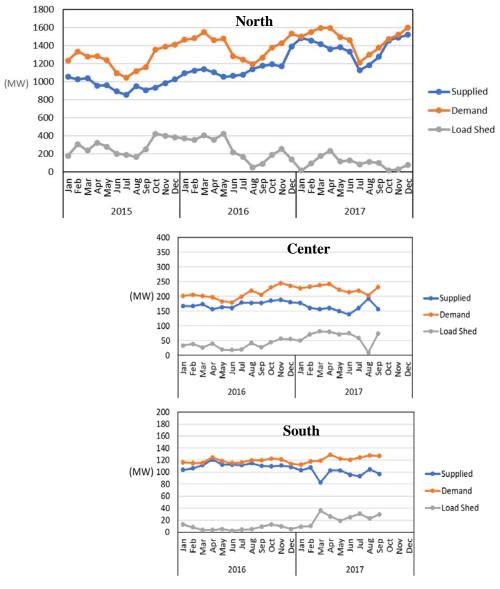
 Table 5-1
 Transition of Electrification Rate

(Source: WB Data-base)

5.1.3 Relevance and problems of the current power demand forecast

The current demand forecast by MINEA seems to be carried out based on an assumed power demand (supplied power plus load shedding power) calculated by summing up the annual maximum power demand for each economic sector – domestic, industrial, commercial, and others. As will be described later, the statistical data in the economic model (GDP) and electrification plan are also unclear. In particular, since any hourly power demand data including load shedding power (latent demand) have not been organized, it makes difficult to predict the amount of generated energy in every month.

For these reasons, the JICA Survey Team decided to forecast the nationwide maximum power demand up to 2040 by assuming power demand for the domestic sector (electrification plan), the industrial sector, and the commercial sector for each power system (North, Central, South, East) and then summing the values up.


5.2 Power Demand Results and Regional Characteristics

5.2.1 Power Demand Results

(1) Load shedding (Latent power demand)

The supply and demand for electric power in Angola are imbalanced, which has resulted in supply power shortages for many years. Hourly records of load-shedding amounts (latent demand) have not been properly organized. As a consequence, it has only been possible to collect load-shedding data at the monthly maximum electric power in the North system after 2015 and in the Center and South system after 2016 (refer to Figure 5-8). Maximum load shedding of up to 400 MW took place from October 2015 to May 2016, but the level fell below 200 MW in 2017 due to the commissioning of the Cambambe No. 2 plant (700 MW) in 2016.

Load-shedding data for the East systems have not been unorganized and unknown.

(Source: Prepared by the JICA Survey Team based on Data from RNT (NLDC))

Figure 5-8 Monthly Maximum Demand and Load-shedding Results (North, Center and South System)

(2) Changes of monthly maximum demand in the whole country

The nationwide power demand results (incl. latent demand) in recent years are shown in the aforementioned Figure 5-8. The ratios of the monthly maximum power demand (incl. latent demand) to the annual maximum power demand in the North system are shown in Figure 5-9.

The fluctuation in power demand between seasons is relatively large. The annual maximum power demand occurred in December, and the monthly maximum demand fell to about 80% over the four months from June to September in winter.

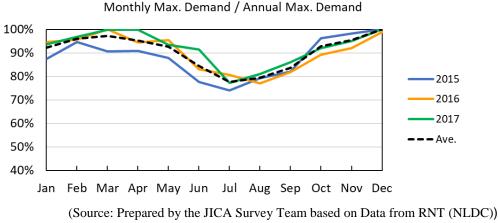
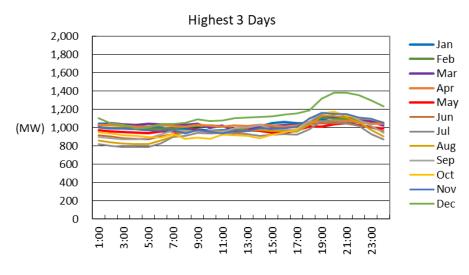
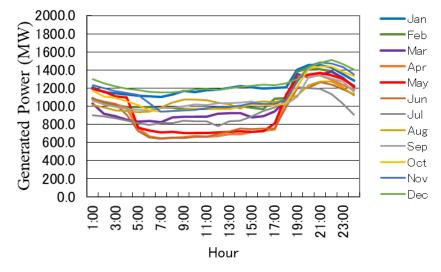



Figure 5-9 Comparison of Monthly Maximum Demand Results in

(3) **Daily load curve results**

Regarding the North system, digital data on the hourly power generation results since October 2015, when SCADA was introduced, were collected from RNT (NLDC). The daily load curve for the 3-day highest power demand month by month in 2016 is shown in Figure 5-10.


The daily load curve is an electric light peak type that peaks from 19:00 to 20:00, but it remains nearly flat in all months but December. This is clearly assumed to be due to the load shedding aforementioned in (1) according to the supply shortage at peak times.

(Source: Prepared by the JICA Survey Team based on Data from RNT (NLDC))

Figure 5-10 Actual Daily Load Curves (North System: 2016)

Meanwhile, the daily load curve for the 3-day highest power demand by months in 2017 is shown in Figure 5-11. In order to impound water to the reservoir of Lauca HPP for commissioning, the Cambambe HPP in the lower stream had set limits to generation during daytime. Therefore, the curves cannot be referred.

(Source: Prepared by the JICA Survey Team based on Data from RNT (NLDC))

Figure 5-11 Actual Daily Load Curves (North System: 2016)

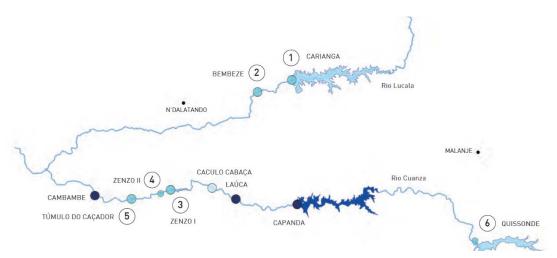


Figure 5-12 Location of Lauca Hydropower Plant

5.2.2 Regional characteristics of power demand

Currently the national power system in Angola is divided into 5 regional power systems: North region, Central region, South region, East region, and Cabinda province. The table below shows the maximum power demand (incl. latent demand), number of customers, electrification rate, and maximum power demand per customer for each province in 2016.

The maximum power demand in the country, excluding Cabinda, is 1,989 MW, of which the North system accounts for approximately 80%. The electrification rate is considerably low, below 10 %, in both the South and East systems.

The maximum demand per consumer can be stratified into 2.0 kW for Luanda, Bengo, and Cuando-Cubango provinces, 1.5 kW for Zaire province, and 1.0 kW for the other provinces.

©ghiapereira

	Province	Real Maximum Demand (MW)	No. of Customers	Electrified Rate (%)	Demand/ Customer (kW)	Stratified Demand/ Customer
Ν	Luanda	1358.3	718,015		1.892	2.000
Ν	Bengo	27.7	14,784		1.874	2.000
Ν	Cuanza Norte	29.4	28,376		1.036	1.000
Ν	Malanje	37.3	35,430		1.053	1.000
Ν	Uíge	25.9	34,709		0.746	1.000
Ν	Zaire	21.0	14,025		1.517	1.500
Ν	Cabinda	46.4	49,048		0.946	1.000
	Subtotal	1546.3		50.8		
С	Cuanza Sur	41.4	45,038		0.919	1.000
С	Benguela	160.0	100,685		1.589	1.500
С	Huambo	49.6	49,086		1.011	1.000
С	Bié	15.0	15,545		0.965	1.000
	Subtotal	266.0		26.7		
S	Huíla	69.0	74,244		0.925	1.000
S	Cunene	15.4	16,545		0.931	1.000
S	Cuando-Cubango	19.2	7,832		2.451	2.000
S	Namibe	31.9	27,766		1.149	1.000
	Subtotal	135.1		7.3		
Е	Moxico	11.3	11,515		0.981	1.000
Е	Lunda Norte	18.5	19,218		0.963	1.000
Е	Lunda Sur	12.0	11,767		1.020	1.000
	Subtotal	41.8		5.4		
	TOTAL	1989.0	1,273,628	32.3	1.562	

 Table 5-2
 Electrification Rate and Maximum Power Demand by Province (2016)

(Source: Prepared by the JICA Survey Team based on Data from RNT and ENDE)

5.3 Power demand forecast up to 2040

5.3.1 Power demand forecasting methodology

As mentioned earlier, GDP growth and power demand growth are uncorrelated, and the power demand data, including that on latent demand, is poorly organized. Hence, the power demand in Angola is to be forecasted by another method according to the flow in the figure below.

First, the annual maximum power demand is forecasted based on INE's population growth forecast, electrification plan (government target), maximum power demand forecast for commercial and industrial sectors (assumption by ENDE), and the results for 2016 in Table 3-2. Second, daily load curves, including those for latent demand, are assumed for each month for each power system, and the annual load factors up to 2040 are estimated accordingly. Finally, the generated energy demand for each power system is forecasted for each ear based on the annual maximum power demand forecast and annual load factor forecast.

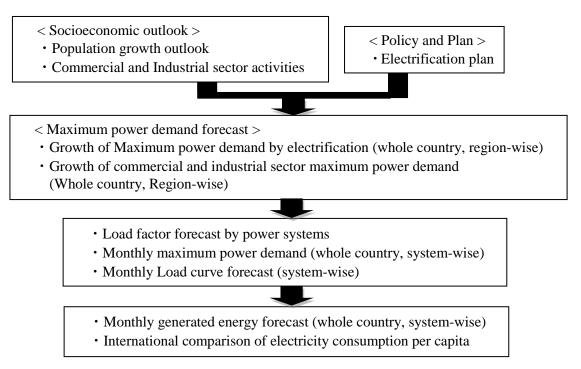
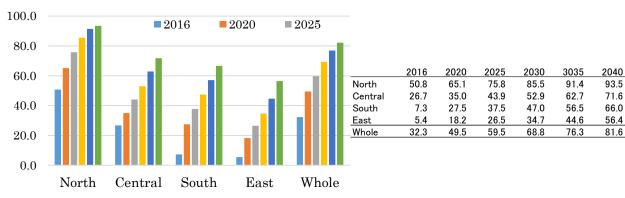



Figure 5-13 Power Demand Forecasting Flow in Angola

5.3.2 Annual maximum power demand forecast

(1) Electrification plan

The electrification plan was formulated based on the electrification rate (32.3% nationwide) as of 2016, as shown in Figure 5-14. The plan assumes that electrification proceeds from an area with high population density, such that the electrification rate in 2025 can reach 60%, the government target.

(Source: JICA Survey Team)

Figure 5-14 Electrification Plan

(2) Incremental power demand forecast for commercial and industrial sectors

Incremental power demand forecasts for the commercial and industrial sectors were assumed as shown in the table below, based on the incremental power demand (kW) up to 2025 estimated by ENDE, with the prerequisite that the incremental power demand for the commercial and industrial sectors can account for 20% of the maximum power demand in 2040.

1	Table 5-5 Incremental Power Demand Forecast for Commercial and Industrial Sectors									
	Province	2020	2025	2030	2035	2040				
Ν	Luanda	66.7	92.5	192.5	292.5	392.5				
Ν	Bengo	3.9	20.8	40.8	60.8	80.8				
Ν	Cuanza Norte	20.8	88.6	138.6	188.6	238.6				
Ν	Malanje	16.4	20.8	40.8	60.8	80.8				
Ν	Uíge	20.8	65.5	115.5	165.5	215.5				
Ν	Zaire	22.9	49.2	79.2	109.2	139.2				
Ν	Cabinda	16.39	20.8	40.8	60.8	80.8				
С	Cuanza Sul	2.3	20.8	40.8	60.8	80.8				
С	Benguela	10.4	20.8	40.8	60.8	80.8				
С	Huambo	22.2	32.1	62.1	92.1	122.1				
С	Bié	1.9	20.8	40.8	60.8	80.8				
S	Huíla	10.5	20.9	40.9	60.9	80.9				
S	Cunene	3.4	20.8	40.8	60.8	80.8				
S	Cuando-Cubango	3.8	20.8	40.8	60.8	80.8				
S	Namibe	2.3	44.0	64.0	84.0	104.0				
Е	Moxico	7.4	44.0	64.0	84.0	104.0				
Е	Lunda Norte	7.4	44.0	64.0	84.0	104.0				
Е	Lunda Sur	6.4	20.8	40.8	60.8	80.8				
	Total	246.0	668.3	1,188.3	1,708.3	2,228.3				

 Table 5-3
 Incremental Power Demand Forecast for Commercial and Industrial Sectors

(Source: JICA Survey Team)

(3) Annual maximum power demand forecast

Annual Maximum Demand for the domestic sector in each province was calculated by the following formula based on the electrification plan aforementioned.

Max. Demand = Electrification rate x population / Mean population per customer x Maximum power demand per customer

Where,

Mean population per customer: 6.8 heads / number (2016 results)

Maximum power demand per customer: Stratified maximum demand per customer in Table 5-2

In addition, by adding the annual maximum power demand for commercial and industrial sectors aforementioned, the region-wise (province-wise) annual maximum power demands up to 2040 were forecasted as shown inTable 5-4 and Figure 5-15.

	20		2020 2025		2030		2035		2040		
	Province	Population	Forecasted Demand (MW)								
Ν	Luanda	8,523,574	2122.9	9,920,997	2751.9	11,332,670	3541.8	12,723,054	4220.5	14,120,025	4733.5
Ν	Bengo	462,598	58.6	553,863	119.1	656,180	176.6	766,679	242.2	882,618	315.7
Ν	Cuanza Norte	524,569	67.4	602,893	151.0	692,367	220.5	791,241	288.1	896,755	358.0
Ν	Malanje	1,175,886	103.3	1,362,964	151.8	1,581,477	216.2	1,827,369	290.5	2,090,620	359.0
Ν	Uíge	1,761,367	72.9	2,039,752	156.0	2,376,167	256.1	2,771,516	370.4	3,212,593	500.5
Ν	Zaire	720,902	54.8	836,664	104.9	960,805	164.4	1,092,530	230.3	1,232,419	303.2
Ν	Cabinda	847,377	104.1	965,555	135.0	1,088,094	177.6	1,213,169	222.3	1,342,068	269.3
	Subtotal		2584.0		3569.8		4753.3		5864.2		6839.2
С	Cuanza Sur	2,236,581	101.5	2,588,393	173.9	3,003,387	262.8	3,477,688	369.3	3,995,420	494.3
С	Benguela	2,611,074	299.9	2,965,850	415.5	3,361,497	562.6	3,793,794	733.9	4,250,235	882.0
С	Huambo	2,471,780	131.9	2,927,924	205.3	3,467,136	318.4	4,081,212	454.1	4,748,471	613.5
С	Bié	1,765,495	41.1	2,073,190	82.1	2,433,384	130.8	2,840,854	207.8	3,280,737	323.3
	Subtotal		574.3		876.8		1274.7		1765.2		2313.2
S	Huíla	2,997,267	121.2	3,486,668	201.3	4,054,938	310.6	4,705,412	443.5	5,418,796	601.6
S	Cunene	1,194,495	38.8	1,395,546	82.7	1,625,997	137.0	1,886,099	200.3	2,170,008	273.3
S	Cuando-Cubango	638,615	41.6	738,518	86.3	849,591	141.3	969,408	204.2	1,096,109	275.3
S	Namibe	608,649	65.3	716,595	128.7	835,795	169.0	964,302	212.3	1,100,773	258.6
	Subtotal		266.8		499.1		757.9		1060.1		1408.8
Е	Moxico	907,681	27.6	1,056,030	75.2	1,228,578	109.4	1,420,377	157.5	1,623,913	224.0
Е	Lunda Norte	1,030,631	37.9	1,185,039	96.5	1,357,513	144.2	1,549,313	198.5	1,757,670	
Е	Lunda Sur	649,133	25.6	754,520	77.4	871,618	92.4	996,379	134.5	1,124,767	180.6
	Subtotal		91.1		249.2		346.0		490.5		664.5
	TOTAL	31,127,674	3516.3	36,170,961	5194.8	41,777,194	7131.9	47,870,396	9180.0	54,343,997	11225.7

 Table 5-4
 Annual Maximum Power Demand Forecast

^{12,000} North Central South East 10,000 8,000 6,000 4,000 2,000 0 2016 2020 2025 2030 2035 2040

	2016	2020	2025	2030	2035	2040
North	1,546	2,584	3,570	4,753	5,864	6,839
Central	266	574	877	1,275	1,765	2,313
South	135	267	499	758	1,060	1,409
East	42	91	249	346	490	665
Total	1,989	3,516	5,195	7,132	9,180	11,226

(Source: JICA Survey Team)

Figure 5-15 Annual Maximum Power Demand Forecast

5.3.3 Daily load curve forecast

In order to predict the annual load factor, it is necessary to assume the daily load curve and maximum power in every month. This is problematic, however, as no organized hourly load-shedding data (latent demand data) are available in the North system. Furthermore, since SCADA has not yet been introduced in the other systems, no organized hourly load-shedding data (latent demand data) and also no hourly supplied power data are available.

(1) North System

The maximum power demand (including latent demand) for each month in the North system in the latest 3 years (shown in Figure 5-8) was normalized with annual maximum power demand, and the average was calculated as shown in Table 5-5. The annual maximum power occurs in December, the maximum power demand in July descends in the lowest level, about 77 % of the annual maximum power demand.

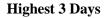

		1 abic	5-5 IV.	tonuny l	лалши	in Dem	anu r iu	cuation	TIOTINA	lizeu		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2015	87%	95%	91%	91%	88%	78%	74%	79%	82%	96%	98%	100%
2016	95%	96%	100%	94%	95%	83%	81%	77%	82%	89%	92%	99%
2017	94%	97%	100%	100%	94%	84%	84%	84%	84%	—	—	—
Average	92%	96%	97%	96%	93%	85%	77%	80%	84%	93%	96%	100%

 Table 5-5
 Monthly Maximum Demand Fluctuation Normalized

(Source: Prepared by the JICA Survey Team based on Data from RNT (NLDC))

Next, the daily load curves (highest 3 days, weekdays, and holidays) every month as of 2016 were assumed by correcting the demand during the peak time (3 hours) based on the load curves in August and December 2016 and January 2017, when latent demand was relatively small (see Figure 5-8). The daily load curves on the highest 3 days, weekdays, and holidays assumed every month are shown in Figure 5-16 (normalized by the annual maximum power demand).

The annual load factor calculated from the above results is 70.3%.

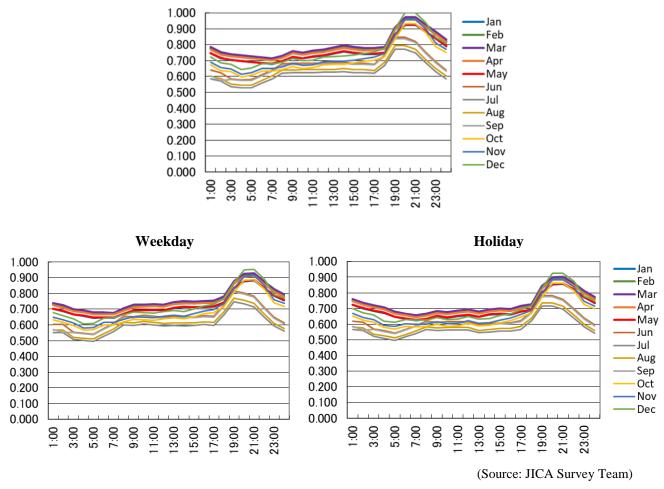
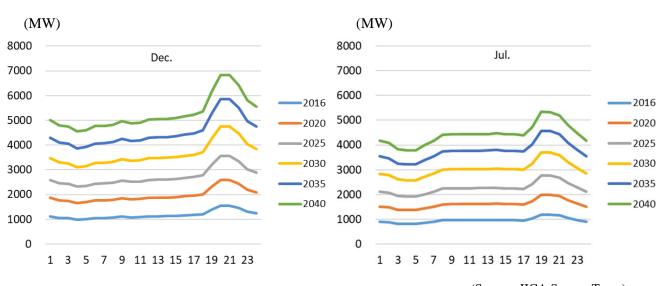



Figure 5-16 Daily Load Curves as of 2016 (North System)

Since the North system has a large city of Luanda, it seems likely that the power demand in the daytime will rise somewhat above the peak demand in the evening in the future. The annual load factor as of 2016 (70.3%) is expected to increase to about 72% in 2040, from the experience of other developing countries.

The daily load curves (highest 3 days, weekdays, holidays) every month up to 2040 were forecasted according to the aforementioned assumption. Figure 5-17 shows the daily load curves on the highest 3 days in December, when monthly maximum power demand is the highest, and in July when the monthly maximum power demand is the lowest in the year.

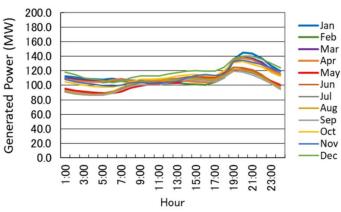

(Source: JICA Survey Team)

Figure 5-17 Daily Load Curve Forecast up to 2040 (North System; Highest 3 days)

(2) Central, South and East Systems

Since hourly generation data in the Center, South and East system have not been organized, the daily load curves in those systems are to be forecast based on the power supply records as of 2016 in the isolated subsystem in the North system.

The daily load curve for the highest 3 days by months as of 2016 in the isolated subsystem in the North system is shown in Figure 5-18.

(Source: JICA Survey Team)

Figure 5-18 Daily Load Curves of Isolated Subsystem in North System (2016)

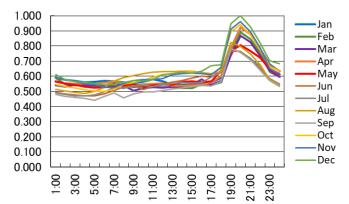
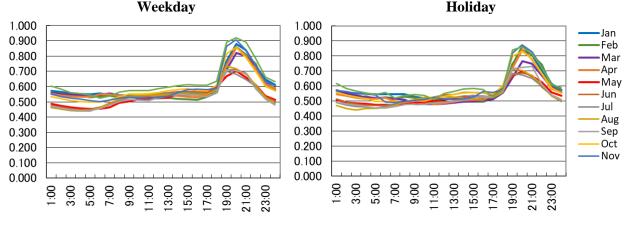
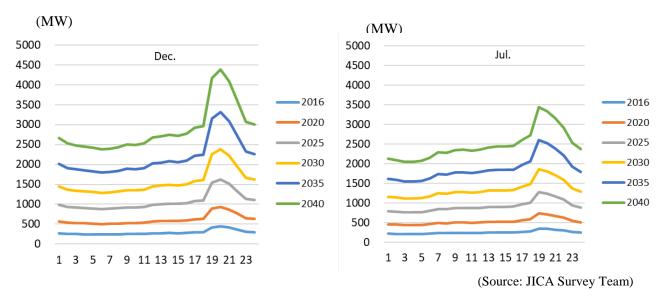

The maximum power demand (including latent demand) for each month in the Center and South system in 2016 (see Figure 5-8) was normalized with annual maximum power demand, and the average was calculated as shown in Table 5-6. The annual maximum power occurs in December, the maximum power demand in June descends in the lowest level, about 77 % of the annual maximum power demand.

Table 5-6 Monthly Maximum Demand Fluctuation Normalized													
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2016	Center	82%	84%	82%	80%	75%	73%	81%	90%	84%	94%	100%	96%
2010	South	94%	92%	93%	100%	95%	92%	93%	96%	96%	99%	97%	91%
Applied		92%	89%	87%	92%	81%	77%	78%	82%	78%	94%	96%	100%


(Source: Prepared by the JICA Survey Team based on Data from RNT (NLDC))

Since the mean latent demand as of 2016 in the Center system, which has a second largest demand scale, was 30% of the monthly maximum power demand as shown in Figure 5-8, this ratio is applied to modify the hourly demand during the peak demand (3 hours) and the monthly daily load curves are forecasted. The daily load curves on the highest 3 days, weekdays, and holidays assumed every month are shown in Figure 5-19 (normalized by the annual maximum power demand). modified and normalized by monthly maximum are shown.

The annual load factor calculated from the above results is 56.8%.



⁽Source: JICA Survey Team)

Figure 5-19 Daily Load Curves as of 2016 (Center+South+East System)

Since electrification will be promoted in the Center, the South and the East system until after 2040. It is expected that load curves for domestic demand will increase in the similar figure based on electrification and the ratio of demand for commerce, industry and commercial will not change. Accordingly, it seems likely that the annual load factor as of 2016 (56.8%) is no change up to 2040.

The total daily load curves in the Center, the South and the East System (highest 3 days, weekdays, holidays) every month up to 2040 were forecasted according to the aforementioned assumption. Figure 5-20 shows the daily load curves on the highest 3 days in December, when

monthly maximum power demand is the highest, and in July when the monthly maximum power demand is the lowest in the North system in the year.

Figure 5-20 Daily Load Curve Forecast (Center+South+East System; Highest 3 days) (3) Whole country

According to the aforementioned results, the annual load factor in the whole country (North, Center, South and East system) as of 2016 (67.3%) will descend up to 66.1% in 2040. The main reason is that the share of maximum power demand in the North system will decline from 77.7% in 2016 to 61.0% 2040 due to promotion of electrification in Center, South and East system.

Figure 5-21 shows the daily load curves on the highest 3 days in December, when monthly maximum power demand is the highest, and in July when the monthly maximum power demand is the lowest in the year.

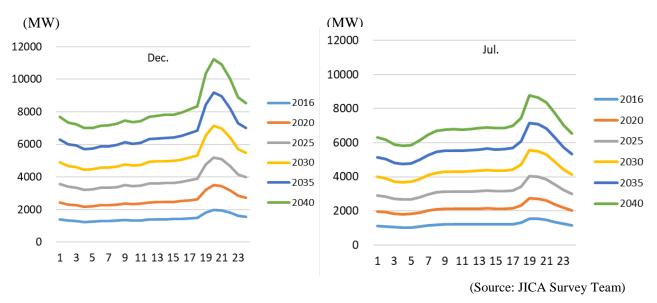


Figure 5-21 Daily Load Curve Forecast (Whole County; Highest 3 days)

5.3.4 Annual generated energy demand forecast

Generation energy demand is calculated by the following formula.

Generated energy demand (kWh) = annual maximum power demand (kW) \times 8,760 hours \times annual load factor

Based on the forecast of the annual maximum power demand and the annual load factor aforementioned, the results for the generated energy demand forecast are shown in Table 5-7 and in Figure 5-22.

			80		(Unit: GWh)
	North	Center	South	East	Whole
2016	9,522	1,325	673	208	11,728
2017	11,131	1,708	837	269	13,946
2018	12,743	2,092	1,001	331	16,167
2019	14,359	2,476	1,165	392	18,392
2020	15,977	2,860	1,329	453	20,619
2021	17,214	3,161	1,560	611	22,546
2022	18,452	3,462	1,791	768	24,474
2023	19,693	3,763	2,023	926	26,405
2024	20,937	4,065	2,254	1,083	28,339
2025	22,183	4,366	2,485	1,241	30,275
2026	23,678	4,762	2,743	1,337	32,520
2027	25,175	5,158	3,001	1,434	34,768
2028	26,675	5,555	3,258	1,530	37,019
2029	28,179	5,951	3,516	1,626	39,272
2030	29,685	6,347	3,774	1,723	41,529
2031	31,103	6,836	4,075	1,867	43,881
2032	32,525	7,324	4,376	2,011	46,235
2033	33,949	7,813	4,677	2,154	48,593
2034	35,375	8,301	4,978	2,298	50,953
2035	36,805	8,790	5,279	2,442	53,316
2036	38,066	9,335	5,626	2,616	55,643
2037	39,330	9,881	5,973	2,789	57,974
2038	40,597	10,427	6,321	2,962	60,306
2039	41,865	10,973	6,668	3,136	62,641
2040	43,136	11,518	7,015	3,309	64,979

 Table 5-7
 Annual Generated Energy Demand Forecast by System

(Source: JICA Survey Team)

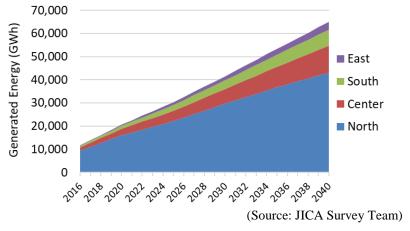


Figure 5-22 Generated Energy Demand Forecast

5.3.5 Macro-evaluation of power demand forecast

To confirm the validity of the power demand forecast results, they were compared with the results of other developing countries. The chart in Figure 5-23 plots the relationship between the results for GDP per capita and the electricity consumption per capita (1973 - 2013) in various developing countries, adding a prescript of Angola's results and the power demand forecast in Angola. The relationship between GDP and electricity consumption is gradually increasing in each country, although the gradient differs from one country to another, reflecting the differences in how electricity is used according to the countries' climatic conditions and industrial structures.

Since the growth rate of population is projected to decrease gradually from 3.0% in 2016 to 2.5% in 2040 whereas the growth rate of GDP is predicted to be constant after 2023 as 1.4% based on the IMF prediction until 2022, the GDP per capita will decline year by year. On the other hand, the electricity consumption per capita is forecasted to linearly increase as well as those of the other countries. Therefore, this demand forecast up to 2040 seems to be valid.

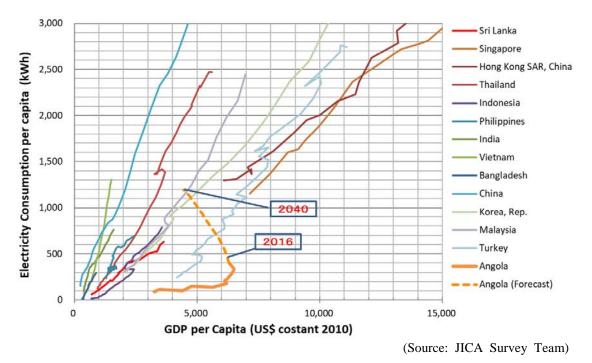


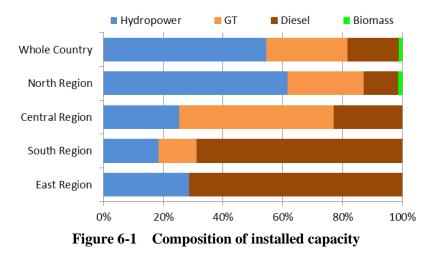
Figure 5-23 Relationship between GDP and Electricity Consumption per Capita

Chapter 6 Optimization of the Generation Development Plan

6.1 Current situation of power generation facilities

6.1.1 Existing power plants

(1) **Composition of Power Plants**


The installed capacity of the existing major power plants by type and by region is shown in Table 6-1. The composition of the generation types by region is shown in Figure 6-1.

Hydropower facilities have the largest share, accounting for more than half of the capacity in the whole country. The rest is supplied by thermal power, specifically, gas turbine and diesel plants. Meanwhile, most of the large hydropower plants are located in the north. The share of thermal power in the north is therefore higher than the shares in the central, south, and east regions.

Regarding the generation of the renewable energy, one biomass generation plant is in operation. Other large-scale development projects, including wind power and solar power plants, have yet to appear.

Destau	T . (. 1	Hydropower	Therma	l Power		Renewable	
Region	Total	(except small)	GT	Diesel	Biomass	Wind	Solar PV
Whole Country	4,339	2,365	1,181	743	50	0	0
North Region	3,527	2,172	899	407	50	0	0
Central Region	492	125	254	113	0	0	0
South Region	221	41	28	152	0	0	0
East Region	99	28	0	71	0	0	0

 Table 6-1
 Major power generation plants by region by type (MW)

Meanwhile, aging of the power plants, in hydro/thermal/renewable power, have been progressed. There are many power plants that have stopped operation or are incapable of generating at the installed capacity. Particularly in the thermal power plants, the drop in the maximum available generation capacity is remarkable. The current available capacity of the thermal power plants is summarized in Table 6-2. Forty percent of the installed capacity of thermal power plants is restricted.

Therefore, the current supply capacity should be evaluated based on the current available capacity.

Table 6-3 shows the available capacity by generation type and by region. Figure 6-2 shows the composition of available generation capacity by region. As the table and figure demonstrate, the share of hydropower generation exceeds 60%. Hence, power generation dominated by hydropower is more realistic than the ratio of installed capacity.

	unuble cupuch	j of the mar p						
	Thermal Power							
Region	Installed capacity (1)	Available capacity (2)	Available ratio (2)/(1)					
Whole Country	1,924	1,145	60%					
North Region	1,306	751	58%					
Central Region	367	226	61%					
South Region	180	130	72%					
East Region	71	38	53%					

 Table 6-2
 Available capacity of thermal power (MW)

	Table 0-3	Available c	арасиу бу	type by re	gion (IVI VV))	
Destau	T . (. 1	Hydropower	Therma	Renewable			
Region	Total	(except small)	GT	Diesel	Biomass	Wind	Solar PV
Whole Country	3,441	2,286	739	406	10	0	0
North Region	2,941	2,150	549	202	10	0	0
Central Region	311	85	162	64	0	0	0
South Region	157	27	28	102	0	0	0
East Region	62	24	0	38	0	0	0

 Table 6-3
 Available capacity by type by region (MW)

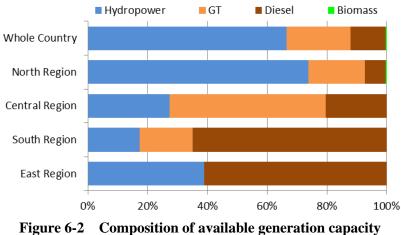


Figure 0-2 Composition of available generation

(2) **Ownership of power facilities**

Table 6-4 shows the ownership of the existing power stations. Most of the O&M for existing power plants, including all of the large-scale hydropower stations with excellent capacity for adjustment of generation, has been conducted by PRODEL. Hence, PRODEL plays a significant role in providing a stable power supply.

Tuble 0 4 Ownership of power plants (1111)								
Region	Total	Hydro	power	Therma	l Power	Bior	nass	
riegion.	Total	PRODEL	Others	PRODEL	Others	PRODEL	Others	
Whole Country	4,339	2,274	92	1,373	552	0	50	
North Region	3,527	2,146	26	944	362	0	50	
Central Region	492	75	50	337	30	0	0	
South Region	221	41	0	28	152	0	0	
East Region	99	12	16	63	7	0	0	

Table 6-4Ownership of power plants (MW)

(3) Hydropower stations

Basic information on the existing hydropower stations is shown in Table 6-5. The installed capacity of hydropower is 2,373 MW as of October 2017. Out of this capacity, 2,146 MW is provided by three (3) large-scale hydropower stations: Capanda, Cambambe, and Lauca hydropower. The Lauca power station is still under construction. Two (2) units have started commercial generation, and the others are to be completed in series, as described in the following section. The generation capacity of these three (3) hydropower stations has therefore been increasing.

All three (3) of these hydropower stations are located in Kwanza River. The Capanda hydropower station, which is located middle of the river, is the first developed hydropower plant in the river basin. The station has a large reservoir with 3,653 million m3 of effective storage and an installed capacity of 520 MW.

The Cambambe hydropower station is located downstream of the Capanda hydropower station. It began with an installed capacity of 180 MW. After completion, the dam was renovated to raise the height by 15m, and renovation of the existing plant for increasing the capacity to 260 MW, and also an additional power station of 700 MW was constructed. The renovation and expansion project are conducted by Odbrecht Angola, and Voith was in charge of power generation equipment and others.

The Lauca hydropower station is located midway between the above two hydropower stations. The Lauca hydropower station is a huge-scale plant with an installed capacity of 2,067 MW and reservoir capacity of 5,482 million m3. These three (3) hydropower stations currently play a very important role as major power sources in Angola.

(4) **Thermal power stations**

Basic information on the existing thermal power stations is shown in Table 6-6.

The Soyo thermal power station is the first combined cycle power plant introduced in Angola. Two (2) gas turbine generators with a total generation capacity of 250 MW have tentatively started generation at the plant using diesel oil for fuel. Completion of construction, with a natural gas supply for fuel, is slated for 2018.

The capacities of the other thermal plants are middle or small scale. There are about ten (10) gas turbine plants in the 20-to-40 MW class. The remaining plants are small-scale diesel power plants, some of which have not been connected to the main power grid.

Most of these gas turbine and diesel power plants are located in or near a substation of a local grid and used for stability of power voltage. Generation during peak time is reasonable, but the purpose of actual generation of these power plants seems to be for power shortage in a whole day. The generation cost therefore seems to be higher, which poses one of the important challenges to address in the Angolan power system.

Regarding the fuel type, Jet B is used for some gas turbines but the major fuel is diesel oil. Natural gas has not been used for generation so far. Plans for the utilization of natural gas for fuel cost reduction are under discussion with Sonangol but are not yet concluded.

	Grid				Loca	ation		Installed	Number of units / unit	Available	Year	
Plant name	connecti on	Owner	Area	Province	Municip ality	Longitude	Latitude	capacity (MW)	capacity (MW)	capacity (MW)	commission ed	Note
Lauca	on grid	PRODEL	North	Malanje	-	15° 7'32.38"E	9°44'30.58"S	666.0	6x333,1x67	666.0	2017-2018	#1,#2 completed, #3-#6 under construction, Total 2067MW
Capanda	on grid	PRODEL	North	Malanje	Cacuso	15°27'48.85"E	9°47'35.02"S	520.0	4x 130	480.0	2004/2007	-
Cambambe	on grid	PRODEL	North	Kwanza Norte	Dondo	14°28'44.76"E	9°45'4.40"S	260.0	4x 65	240.0	2012	-
Cambambe 2	on grid	PRODEL	North	Kwanza Norte	Dondo	14°29'1.08"E	9°44'47.27"	700.0	4x 175	640.0	2016	-
Mabubas	on grid	IPP	North	Bengo	Dande	13°42'0.57"E	8°32'6.77"S	25.6	4x 6.4	24.0	2012	-
Biópio on grid PRODEL Central Benguela Lobito 13°43'36.24"E 12°28'4.58"S							14.58	4x 3.645	12.0	1955	-	
Lomaúm	Lomaúm on grid IPP Central Benguela Cubal 14°23'8.39"E 12°43'31.27"S								2x10, 2x15	50.0	2015	-
Gove	Gove on grid PRODEL Central Huambo Caála 15°52'12.72"E 13°27'7.41"S								3x 20	35.0	2012	-
Matala	Matala on grid PRODEL South Huíla Matala 15° 2'30.93"E 14°44'39.96"S								3x 13.6	27.2	1959	-
	On grid Total=									2,174.2		
Luachimo	Luachimooff gridPRODELEastLunda NorteDundo20°50'35.45"E7°21'48.94"S								4x 2.1	4.0	-	-
Chicapa	off grid	IPP	East	Lunda Sul	Saurimo	20°21'14.94"E	9°29'8.64"S	16.0	4x 4	14.0	-	-
Chiumbe Dala	off grid	PRODEL	East	Lunda Sul		20°12'14.75"E	11° 1'19.39"S	12.0	2x4, 2x2	10.0	2017	-
							Off grid Total=	36.4		28.0		
							Hydro Total=	2,373.4		2,202.2		

Table 6-5List of existing hydropower stations as of October 2017

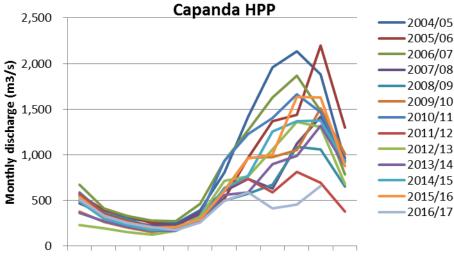
	Grid				Loca	tion		Installed	Number of units	Available	V			
Plant name	connec- tion	Owner	Area	Province	Municipali ties	Longitude	Latitude	capacity (MW)	/ unit capacity (MW)	capacity (MW)	Year commissioned	Туре	Fuel	Note
Soyo	on grid	PRODEL	North	Zaire	Soyo	12°20'51.70"E	6°10'40.60"S	250.0	GT 4x125, ST 2x125	250.0	2017-2018	GT	Diesel/NG	#1,2 in operation, Total 750 MW(CCGT)
CD Benfica	on grid	PRODEL	North	Luanda	Belas	13° 9'54.40"E	8°57'14.73"S	40.0	10x 4	24.0	2013	Diesel	Diesel	
CT Cazenga #1	on grid	IPP	North	Luanda	Cazenga			24.4	1x 24.4	0.0	1979	GT	Diesel	N/A
CT Cazenga #2	on grid	IPP	North	Luanda	Cazenga			32.0	1x 32.8	32.0	1985	GT	Diesel	
CT Cazenga #3	on grid	IPP	North	Luanda	Cazenga			40.0	1x40	40.0	1993	GT	Diesel	
CT Cazenga #4	on grid	IPP	North	Luanda	Cazenga	13°18'23.38"E	8°48'53.54"S	22.4	1x 22.45	0.0	-	GT	Jet B	N/A
CT Cazenga #5	on grid	IPP	North	Luanda	Cazenga			22.4	1x 22.45	0.0	-	GT	Jet B	N/A
CT Cazenga #6	on grid	PRODEL	North	Luanda	Cazenga			22.0	1x 22	18.00	2010	GT	Jet B	
CT Cazenga #7	on grid	PRODEL	North	Luanda	Cazenga			22.0	1x 22	18.00	2010	GT	Jet B	
CT CFL	on grid	PRODEL	North	Luanda	Cazenga	13°16'36.78"E	8°49'41.66"S	125.0	5x 25	75.0	2012-2013	Diesel	Diesel	#1,#3 N/A
CD Viana Km9	on grid	PRODEL	North	Luanda	Viana	13°18'59.68"E	8°51'59.71"S	40.0	24x 1.66	25.0	2013	Diesel	Diesel	
CT Boa Vista I	on grid	PRODEL	North	Luanda	Luanda			45.0	1x 45	0.0	2011	GT	Diesel	N/A
CT Boa Vista II	on grid	PRODEL	North	Luanda	Luanda	13°13'19.10"E	8°49'20.40"S	45.0	1x 45	0.0	2011	GT	Diesel	N/A
CT Boa Vista III	on grid	PRODEL	North	Luanda	Luanda			41.2	1x 41.2	24.0	2011	GT	Diesel	
CT Refinaria	on grid	IPP	North	Luanda	Cazenga	13°18'28.20"E	8°46'56.37"S	25.5	-	0.0	-	GT	Diesel	
CT CIF Thermal	on grid	IPP	North	Luanda	Viana	13°34'0.35"E	9° 6'29.84"S	50.0	-	0.0	-	GT	Diesel	
CD Capopa 1	on grid	PRODEL	North	Malanje	Malanje	-	-	4.5	-	0.0	2013	Diesel	Diesel	
CD Capopa 2	on grid	PRODEL	North	Malanje	Malanje	-	-	19.6	5x3.9	15.7	2015	Diesel	Diesel	
CT Camama	on grid	PRODEL	North	Luanda	Belas	-	-	50.0	2x25	50.0	2017	GT	Diesel	
CT Biópio	on grid	PRODEL	Central	Benguela	Lobito	13°43'21.66"E	12°27'48.10"S	22.0	1x22.0	0.0	1977	GT	Diesel	
CT Quileva	on grid	PRODEL	Central	Benguela	Lobito	13°35'23.96"E	12°22'54.95"S	182.3	6x15,3x30.78	112.3	2010-2017	GT	Diesel	#2-5 N/A
CT Belem	on grid	PRODEL	Central	-	-	-	-	50.0	2x25	50.0	2017	GT	Diesel	
CD Quileva (Aggreko)	on grid	IPP	Central	Benguela	Lobito	13°35'20.90"E	12°22'58.58"S	30.0	39x0.79	26.4	-	Diesel	Diesel	
CD Lobito	on grid	PRODEL	Central	Benguela	Lobito	13°32'29.78"E	12°22'1.80"S	20.0	4x5.0	0.0	1986	Diesel	Diesel	N/A
CD Cavaco	on grid	PRODEL	Central	Benguela	Benguela	13°25'57.06"E	12°35'11.60"S	20.0	5x4.1	8.0	2013	Diesel	Diesel	#1,2,4,5 N/A
CD Benfica	on grid	PRODEL	Central	Huambo	Huambo	15°44'45.10"E	12°45'13.75"S	15.0	4x 3.75	11.3	2013	Diesel	Diesel	#3 N/A
CD Lubango	on grid	IPP	South	Huíla	Lubango	13°30'52.08"E	14°55'53.49"S	40.0	11x2.61	29.1	2013	Diesel	Diesel	
CD Arimba	on grid	IPP	South	Huíla	Lubango	13°34'48.45"E	14°57'7.87"S	40.0	28x1.43	31.4	2012	Diesel	Diesel	
							On grid Total=	1,340.3		840.2				
CD Morro Bento	off grid	IPP	North	Luanda	Belas	13°11'21.47"E	8°53'29.65"S	40.0	40x1.05	0.0	2017	Diesel	Diesel	N/A
CT Morro Bento 2	off grid	PRODEL	North	Luanda	Belas	13°11'21.47"E	8°53'29.65"S	50.0	2x 25	25.0	2017	GT	Diesel	#1 stopped
CT Rocha Pinto	off grid	IPP	North	Luanda	Belas	-	-	40.0	2x 20	-	-	GT	Diesel	N/A
CD Quartéis	off grid	PRODEL	North	Luanda	Cazenga	13°14'26.92"E	8°50'24.79"S	32.0	8x 3.75	16	2013-17	Diesel	Diesel	
CD Cassaque	off grid	PRODEL	North	Luanda	Viana	13°21'56.56"E	9° 6'58.12"S	20.0	18x 1.22	9.2	2013	Diesel	Diesel	
CD Morro da Luz	off grid	IPP	North	Luanda	Belas	13°11'50.09"E	8°52'13.68"S	20.0	29x1.38	0.0	-	Diesel	Diesel	
CT Viana	off grid	PRODEL	North	Luanda	Viana	13°18'59.68"E	8°51'59.71"S	22.0	1x22	22.0	2010	GT	Diesel	
CD Kianganga	off grid	PRODEL	North	Zaire	Zaire	-	-	19.7	-	11.13	2006-15	Diesel	Diesel	

Table 6-6 List of existing thermal power stations as of October 2017

The Project for Power Development Master Plan in the Republic of Angola

Final Report

Plant name tion Owne tion Area hou Provine Municipality Latitude Latitude (MW) Company (MW) Commissione (MW) Type (MW) Fuel Latitude Numissione (MW) CD Tombaco ofigit PRODEL Numit Zaire Zaire - - 10.0 - 10.6 - Disel	Grid Location							Y . 11 1		4 111					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Plant name	connec-	Owner	Area	Province	Municipali		Latitude	capacity	/ unit capacity	capacity		Туре	Fuel	Note
CD Calal Off right PRODEL Central Huambo Cala 2.0 2.00 Diesel Diesel Diesel CD Ballundo off right PRODEL Central Bilsi Canacupa 3.2 1.2 2001 Diesel Diesel <td< td=""><td>CD Tomboco</td><td>off grid</td><td>PRODEL</td><td>North</td><td>Zaire</td><td>Zaire</td><td>-</td><td>-</td><td>1.0</td><td></td><td>1.016</td><td>-</td><td>Diesel</td><td>Diesel</td><td></td></td<>	CD Tomboco	off grid	PRODEL	North	Zaire	Zaire	-	-	1.0		1.016	-	Diesel	Diesel	
CD Balando officit PRODEL Central Hambo Balando 2.7 2.26 2013 Diest Diest CD Camacyan officit PRODEL Central Bi6 Camacyan 2.1 2001 Diest Diest Diest CD Camacyan offigit PRODEL Central Bi6 Cinxanto 8.0 1.39 Diest Diest Diest CD Chandono offigit PRODEL Central Namibe 12°10714.85°E 15° 842.01°S 11.2 22.5.6 0.0 Diest Diest <td>CD Kaluapanda</td> <td>off grid</td> <td>PRODEL</td> <td>Central</td> <td>Bié</td> <td>Kuito</td> <td>-</td> <td>-</td> <td>10.0</td> <td>4x2.5</td> <td>5.0</td> <td>2011</td> <td>Diesel</td> <td>Diesel</td> <td>#1,2 N/A</td>	CD Kaluapanda	off grid	PRODEL	Central	Bié	Kuito	-	-	10.0	4x2.5	5.0	2011	Diesel	Diesel	#1,2 N/A
CD Camarupa off rid PRODEL Central Bié Camarupa - 3.2 - 1.2 2001 Diesd Diesd Diesd CD Changura off rid PRODEL Central Ed Changura - - - 8.0 - 8.0 - Diesd		off grid	PRODEL	Central	Huambo	Caála	-	-		-		2004-09	Diesel	Diesel	
CD Chinguar off and OL Dasambo PRODEL of and off and PRODEL Central Central PRODEL Bit Central Central PRODEL Central Central PRODEL Bit Central PRODEL Central Central PRODEL Central Central PRODEL Central Central PRODEL Central Status Namibe PRODEL Namibe Namibe 12°1014.85°L P2'1014.85°L 15° 84201°S OL Central Central PRODEL Namibe PRODEL Namibe Namibe 12°1014.85°L P2'1014.85°L 15° 84201°S OL Central Central PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe P2'1014.85°L 15° 84201°S OL Central PRODEL Namibe PRODEL Namibe PRODEL Namibe P2'1014.85°L 15° 84201°S OL Central PRODEL Namibe PRODEL Namibe PRODEL Namibe P2'1014.85°L 15° 84201°S OL Central PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL PRODEL Namibe PRODEL Namibe PRODEL PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namibe PRODEL Namib	CD Bailundo	off grid	PRODEL	Central	Huambo	Bailundo	-	-	2.7	-	2.26	2013	Diesel	Diesel	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		off grid	PRODEL	Central		Camacupa	-	-		-				Diesel	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		off grid		Central	Bié	Chinguar	-	-		-		2008	Diesel		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		off grid		Central	-	-	-	-		-		-	Diesel		
CT Xittot III off grid PRODEL South Namibe Namibe 12°1014.85°E 15° 842.01°S 28.0 1x28 28.0 CT GT Diesel Picel CD Aniport off grid IPP South Namibe Namibe 12° 12° 12° 12° 12° 12° 12° 12° 12° 12°					Namibe	Namibe							Diesel		N/A
CD Airport off grid IPP South Namibe Namibe $12^{\circ}726.88^{\circ}$ $1.5^{\circ}14'20.56^{\circ}$ 11.7 $33.3.89$ 7.8 2013 Diesel Die		U		South	Namibe	Namibe						2013			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		off grid	PRODEL	South	Namibe	Namibe	12°10'14.85"E	15° 8'42.01"S	28.0				GT	Diesel	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CD Airport	off grid	IPP	South	Namibe	Namibe	12° 7'26.88"E	15°14'20.56"S	11.7	3x3.89	7.8	2013	Diesel	Diesel	#2 N/A
CD Tômbwaoff gridIPPSouthNamibeTômbwa11°510.70"E15°48'1.730"S9.6St,1,2x1.24.322014.15DieselDieselDieselCD Cuolo Cunavaleoff gridNPPSouthKuadoVibono19°8'44.30"15°8'29.50"S7.55x1.77.52015Diesel <td< td=""><td></td><td>off grid</td><td>IPP</td><td>South</td><td>Cunene</td><td>Ondjiva</td><td>-</td><td>-</td><td>10.2</td><td>3x 3.33</td><td>6.8</td><td>2013</td><td>Diesel</td><td>Diesel</td><td></td></td<>		off grid	IPP	South	Cunene	Ondjiva	-	-	10.2	3x 3.33	6.8	2013	Diesel	Diesel	
CD Cuito CunavaleofPPSouthKuadoKubado19° 844.30"15° 829.50"7.55x 1.77.52015DieselDieselCD Saurinooff gridPRODELEastLunda SuSumbe20°24'5.16"E9°38'32.58"S14.15x 2.54.12011-14DieselDieselDieselCD Daudo Novaoff gridPRODELEastLunda SuSumbe20°48'20.98"E7°22'55.82"30.08x 3.7522.52013-14DieselDieselDieselCD Luena (Hynday)off gridPRODELEastMoxicoLuena19°56'44.40"E11°45'39.72"S7.55x 1.73.02012DieselDieselDieselCD Luena (Hynday)off gridPRODELEastMoxicoLuena19°56'44.40"E11°45'39.72"S7.55x 1.73.02012DieselDieselDieselCD Luena (Catherpillar)off gridPRODELEastMoxicoLuena19°56'44.00"E11°45'39.72"S7.55x 1.73.02.01DieselDieselDieselCD Luena (Catherpillar)off gridPRODELEast5.4-3.62015DieselDieselDieselCD Luauoff gridPPPEast7.47.4-3.0-DieselDieselCD Chibodooff gridIPPCabindCabind7.41.81.65<	CD Menongue	off grid	IPP	South	K. Kubango	Menongue	17°41'52.31"E	14°39'24.65"S	11.9	7x1.71	8.5	2013	Diesel	Diesel	
CuanavaleOff gridIPPSouthKuandoKuandoIPP 844.30°EIS*829.50°S7.5SX 1.77.52015DieselDieselDieselCD <td< td=""><td>CD Tômbwa</td><td>off grid</td><td>IPP</td><td>South</td><td>Namibe</td><td>Tômbwa</td><td>11°51'0.70"E</td><td>15°48'17.30"S</td><td>9.6</td><td>5x1.4, 2x 1.2</td><td>4.32</td><td>2014-15</td><td>Diesel</td><td>Diesel</td><td></td></td<>	CD Tômbwa	off grid	IPP	South	Namibe	Tômbwa	11°51'0.70"E	15°48'17.30"S	9.6	5x1.4, 2x 1.2	4.32	2014-15	Diesel	Diesel	
Image: Constraint of gridPRODELEastLunda SulSumbe $20^{\circ}24^{\circ}.16^{\circ}E$ $9^{\circ}38^{\circ}32.58^{\circ}S$ 14.1 $5x 2.5$ 4.1 $2011-14$ DieselDieselCD Dundo Novaoff gridPRODELEastLunda Nut $20^{\circ}24^{\circ}.16^{\circ}E$ $9^{\circ}38^{\circ}32.58^{\circ}S$ 14.1 $5x 2.5$ 4.1 $2011-14$ DieselDieselCD Dundo Novaoff gridPRODELEastLunda Nut $20^{\circ}48^{\circ}20.98^{\circ}E$ $7^{\circ}22^{\circ}5.82^{\circ}S$ 30.0 $8x 3.75$ 22.5 $2013-14$ DieselDieselCD Lueaaoff gridPRODELEastMoxicoLuena $19^{\circ}5644.40^{\circ}E$ $11^{\circ}45^{\circ}39.72^{\circ}S$ 7.5 $5x 1.7$ 3.0 2012 DieselDieselCD Lueaaoff gridPRODELEastMoxicoLuena $19^{\circ}544.40^{\circ}E$ $11^{\circ}45^{\circ}39.72^{\circ}S$ 7.5 $5x 1.7$ 3.0 2012 DieselDieselCD Lueaaoff gridPRODELEastMoxicoLuena $19^{\circ}544.40^{\circ}E$ $11^{\circ}45^{\circ}39.72^{\circ}S$ 7.5 $5x 1.7$ 3.0 2012 DieselDieselCD Luaaoff gridPRODELEastMoxicoLuena $19^{\circ}544.40^{\circ}E$ $11^{\circ}4730.00^{\circ}S$ 6.5 $2x 1.64+2x 1.6$ 1.6 2013 $Diesel$ DieselCD Luaaoff gridPRODELEast $ 7.4$ $ 3.6$ 2015 $Diesel$ DieselCD EastIPPCabindaCabinda $-$ </td <td></td> <td>off grid</td> <td>IPP</td> <td>South</td> <td>Kuando</td> <td>Kubango</td> <td>19° 8'44.30"E</td> <td>15° 8'29.50"S</td> <td>7.5</td> <td>5x 1.7</td> <td>7.5</td> <td>2015</td> <td>Diesel</td> <td>Diesel</td> <td></td>		off grid	IPP	South	Kuando	Kubango	19° 8'44.30"E	15° 8'29.50"S	7.5	5x 1.7	7.5	2015	Diesel	Diesel	
CD Saurinooff gridPRODELEastLunda SulSumbe $20^{\circ}24^{\circ}5.16^{\circ}$ $9^{\circ}38^{\circ}32.58^{\circ}$ 14.1 $5x 2.5$ 4.1 $2011-14$ DieselDieselDieselCD Dundo Novaoff gridPRODELEast $\frac{Lunda}{Norte}$ Dundo $20^{\circ}48^{\circ}20.8^{\circ}$ $7^{\circ}22^{\circ}55.8^{\circ}$ 3.00 $8x 3.75$ 22.5 $2013-14$ DieselDieselDieselCD Luena (Hynday)off gridPRODELEastMoxicoLuena $19^{\circ}56^{\circ}44.40^{\circ}$ $11^{\circ}45^{\circ}39.72^{\circ}$ $5x 1.7$ 3.0 2012 DieselDieselDieselCD Luena (Catherpillar)off gridPRODELEastMoxicoLuena $19^{\circ}56^{\circ}44.40^{\circ}$ $11^{\circ}47^{\circ}30.00^{\circ}$ $5x 1.7$ 3.0 2012 $Diesel$ DieselDieselCD Luena (Catherpillar)off gridPRODELEastMoxicoLuena $19^{\circ}56^{\circ}44.00^{\circ}$ $11^{\circ}47^{\circ}30.00^{\circ}$ $5x 1.7$ 3.0 2012 $Diesel$ $Diesel$ $Diesel$ CD Luena (Catherpillar)off gridPRODELEast $1.0x$ $10^{\circ}54^{\circ}40.62^{\circ}$ $11^{\circ}47^{\circ}30.00^{\circ}$ $5x 1.7$ 3.6 2015 $Diesel$ $Diesel$ $Diesel$ CD Luena (Catherpillar)off gridPRODELEast $1.0x$ $10^{\circ}470.62^{\circ}$ 7.4 7.4 7.6 3.6 2015 $Diesel$ $Diesel$ CD Luena (Catheroff gridIPPEast $1.0x$ 7.4 7.4 7.4 7.5								372.9		171.9					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CD Saurimo	off grid	PRODEL	East	Lunda Sul	Sumbe	20°24'5.16"E	•	14.1	5x 2.5	4.1	2011-14	Diesel	Diesel	
CD Luena (Hynday)off gridPRODELEastMoxicoLuena19°56'44.0"E11°45'39.72"S7.55x 1.73.02012DieselDieselDieselCD Luena (Catherpillar)off gridPRODELEastMoxicoLuena19°56'44.0"E11°47'30.00"S6.52x1.64+2x1.61.62013DieselDieselDieselDieselCD Luena (Catherpillar)off gridPRODELEast5.4-3.62015DieselDieselDieselCD Luauoff gridPRODELEast5.4-3.62015DieselDieselDieselCD Luauoff gridPRODELEast5.4-3.62015DieselDieselDieselCD Luauoff gridIPPEast7.47.43.03.62015DieselDieselDieselCD Luauoff gridIPPEast7.47.43.03.01.6Diesel	CD Dundo Nova	off grid PRODEL East Lunda Dundo 20048/20.08"E 7022/55.82"S						30.0	8x 3.75	22.5	2013-14	Diesel	Diesel		
Catherpillar)off gridPRODELEastMoxicoLdena19'3440.02 E11'4/30.00 S 6.3 $2X1,04+2X1,6$ 1.6 2013 DieselDieselCD Luauoff gridPRODELEast $ 5.4$ $ 3.6$ 2015 DieselDieselCD Eraoff gridIPPEast $ 7.4$ $ 3.0$ $-$ DieselDieselCD Eraoff gridIPPEast $ 7.4$ $ 3.0$ $-$ DieselDieselCD Eraoff gridIPPEast $ 7.4$ $ 3.0$ $-$ DieselDieselCD Eraoff gridIPPEast $ 7.4$ $ 3.0$ $ 0.6$ 0.6 CD Eraoff gridIPPCabindaCabinda $ 7.4$ $ 3.0$ $ 0.6$ 0.6 </td <td></td> <td colspan="7">D Luena off grid DDODEL East Movice Luena 10°56'44.40"E 11°45'30.72"S</td> <td>7.5</td> <td>5x 1.7</td> <td>3.0</td> <td>2012</td> <td>Diesel</td> <td>Diesel</td> <td></td>		D Luena off grid DDODEL East Movice Luena 10°56'44.40"E 11°45'30.72"S							7.5	5x 1.7	3.0	2012	Diesel	Diesel	
CD Eraoff gridIPPEast 7.4 - 3.0 -DieselDieselCD Eraoff gridIPPEast 7.4 - 3.0 -DieselDieselDieselCD Chibodooff gridIPPCabindaCabinda 7.4 - 3.0 -DieselDieselDieselCD Chibodooff gridIPPCabindaCabinda 30.6 $18x1.67$ 15.3 2014 DieselDieselCD Chibodooff gridPRODELCabindaCabinda 30.6 $18x1.67$ 15.3 2014 DieselDieselCD Santa Catarinaoff gridPRODELCabindaCabinda 2.2 $2x1.1$ 1.1 2014 DieselDieselCD Belizeoff gridIPPCabindaCabinda 2.2 $2x1.1$ 1.1 2014 DieselDieselCD Belizeoff gridIPPCabindaCabinda 2.2 $2x1.1$ 1.1 2014 DieselDieselCD Buco Zauoff gridIPPCabindaCabinda 2.2 $2x1.1$ 2.2 2014 DieselDiesel									6.5	2x1,64+2x1,6	1.6	2013	Diesel	Diesel	
OOO	CD Luau	off grid	PRODEL	East	-	-	-	-	5.4	-	3.6	2015	Diesel	Diesel	
Termal (main land) Total=1,784.01,050.0Image: Colspan="6">Image: Colspan="6" Colspan="6">Image: Colspan="6" Colspa=""6" Colspa=""6" Colspan="6" Col	CD Era									-	3.0	-	Diesel	Diesel	
CD Chibodooff gridIPPCabindaCabinda30.618x1.6715.32014DieselDieselCT Malembo I/II /IIIoff gridPRODELCabindaCabinda95.02x35, 1x25702012-15GTDieselCD Santa Catarinaoff gridIPPCabindaCabinda10.26x 1.76.82014DieselDieselCD Belizeoff gridIPPCabindaCabinda2.22x 1.11.12014DieselDieselCD Buco Zauoff gridIPPCabindaCabinda2.22x 1.11.12014DieselDiesel									70.9		37.8				
CT Malembo I / II / IIIoff gridPRODELCabindaCabinda95.02x35, 1x25702012-15GTDieselCD Santa Catarinaoff gridIPPCabindaCabinda10.26x 1.76.82014DieselDieselCD Belizeoff gridIPPCabindaCabinda2.22x 1.11.12014DieselDieselCD Buco Zauoff gridIPPCabindaCabinda2.22x 1.11.12014DieselDiesel		Termal (main land) Total=							1,784.0		1,050.0				
CT Malembo I / II / IIIoff gridPRODELCabindaCabinda95.02x35, 1x25702012-15GTDieselCD Santa Catarinaoff gridIPPCabindaCabinda10.26x 1.76.82014DieselDieselCD Belizeoff gridIPPCabindaCabinda2.22x 1.11.12014DieselDieselCD Buco Zauoff gridIPPCabindaCabinda2.22x 1.11.12014DieselDiesel	CD Chibodo	off grid	IPP	Cabinda	Cabinda	-	-	-	30.6	18x1.67	15.3	2014	Diesel	Diesel	
CD Belizeoff gridIPPCabindaCabinda2.22x 1.11.12014DieselDieselCD Buco Zauoff gridIPPCabindaCabinda2.22x 1.11.12.22014DieselDiesel	CT Malembo I / II	Ŭ				-	-	-							
CD Buco Zau off grid IPP Cabinda Cabinda 2.2 2x 1.1 2.2 2014 Diesel Diesel	-	off grid	IPP	Cabinda	Cabinda	-	-	-	10.2	6x 1.7	6.8	2014	Diesel	Diesel	
	CD Belize	off grid	IPP	Cabinda	Cabinda	-	-	-		2x 1.1			Diesel	Diesel	
Off grid (Cabinda) Total 140.2 95.4	CD Buco Zau	off grid	IPP	Cabinda	Cabinda	-	-	-	2.2	2x 1.1	2.2	2014	Diesel	Diesel	
011 g11u (Cabinua) 10tai - 170,2 75,7	Off grid (Cabinda) Total=					140.2		95.4							
Thermal Total= 1,924.2 1,145.4	Thermal Total=					1.924.2		1.145.4							


6.1.2 Performance of large hydropower stations

As mentioned in the previous section 6.1.1(3), large-scale hydropower stations are developed in the Kwanza River. Two of the stations, the Capanda and Cambambe hydropower stations, operated as major power generation plants before the third station, Lauca, were constructed.

The Capanda power station is located in the middle of Kwanza River, upstream of the other two. The inflow record to the Capanda reservoir is shown in Figure 6-3. The inflow varies widely between the dry season and flood season, and also during the flood season year by year.

The generation record of the Capanda hydropower station is shown in Figure 6-4. The seasonal change in generation was regulated by use of the reservoir, but less power was generated during the dry season (September-October) than during the wet season. Inflow in 2011 and 2012, the driest years, was quite small, as was the generation during the dry season in those years. Inflow in the years 2016 to 2017 was also small, with similarly low generation in the dry season.

The available generation of hydropower depends on river discharge. Accordingly, a generation plan for reservoir usage to respond to shifting inflow during the flood season to dry season is important for a reservoir-type hydropower station. Given the large inflow gap between the flood and dry seasons in Angola, it will be necessary to estimate the available discharge of each month and reflect the estimates in the long-term development plan.

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

Figure 6-3 Inflow record of Capanda Hydropower Station

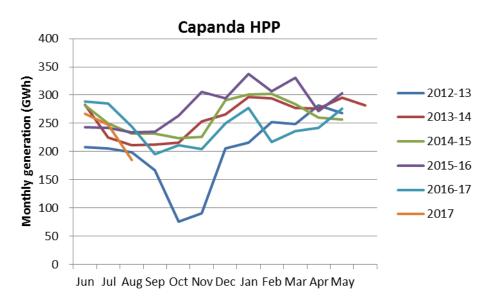


Figure 6-4 Generation record of Capanda Hydropower Station

6.1.3 Power stations under construction

(1) Hydropower stations

Two (2) large-scale hydropower stations are under construction: the Lauca hydropower station (2,167 MW) and Caculo Cabaca hydropower station (2,170 MW). Both stations are large reservoir types located in the Kwanza River between the Capanda and Cambambe hydropower stations.

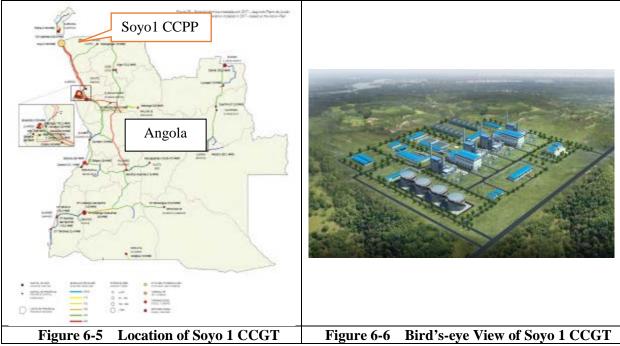
<Lauca hydropower station>

As described in the previous section, The Lauca hydropower station is located downstream of Capanda hydropower station. One (1) turbine/generator utilizing maintenance flow and six (6) 333.3 MW Francis type turbine/generators are planned. The construction cost was financed from Brazil. The construction was carried out by ODLBRECHT, and ANDRIZ HYDRO took a role for hydro turbines/ generators. The first generator was completed in July 2017 and the second started generating power from October 2017. The following units are scheduled to be completed one at a time at two-month intervals going forward.

<Caculo Cabaca hydropower station>

The Caculo Cabaca hydropower station is located downstream of the Lauca power station and consists of four (4) 530 MW Francis type hydro turbine/generators and one (1) turbine/generator using maintenance flow. The construction cost was prepared by the loan of the Chinese Industrial and Commercial Bank of China (ICBC), and the joint venture of CGGC (China Gezhouba Group Co., Ltd.), BOREAL INVESTMENTS LIMITED, CGGC & NIARA - HOLDING LDA was selected for the contractor. Preparations for construction have started and diversion works have been ongoing from August 2017. Construction for the main works is scheduled to take place over a period of 80 months.

(2) **Thermal power stations**


Construction of the Soyo 1 thermal power station, the first combined cycle thermal power plant in Angola, is progressing. The plants in this power station have higher capacity and efficiency than the previous thermal power plants.

<Soyo 1 Combined Cycle Power Plant >

The Soyo 1 CCGT is being constructed in Zaire province in the north-west of Angola (see Figure 6-5). One gas turbine is already commissioned. The plant has a capacity of 750 MW and runs on gas and diesel oil.

The Soyo 1 CCGT consists of 2 blocks of multi-shaft-type CCGTs. Each block has a capacity of 375 MW and consists of two (2) sets of gas turbine generators, two (2) sets of heat recovery steam generators (HRSGs), and one (1) set of steam turbine.

A gas pipeline running from Angola LNG terminal at the Congo River to the Soyo 1 CCGT will supply natural gas to the CCGT from November, 2017.

(Source) Energia 2025 and Soyo 1 CCPP construction office

The main specifications for Soyo 1 CCPP are shown in the table below.

(a) Specifications for the Main Equipment

Equipment	Capacity and Number	Туре	Manufacturer
Gas Turbine	125 MW x 4 sets	MS9001E	GE
Steam Turbine	125 MW x 2 sets	TCDF	GE
Generator (GT)	125 MVA x 4 sets	Hydrogen Cooling	GE
Generator (ST)	125 MVA x 2 sets	Synchronous	
HRSG	HP= 145.27 t/h and	Horizontal	Hangzhou
	LP=181.08 t/h x 4 sets	Natural Circulation	

(b) Performance

Gurantee Value
49.6 % at 15°C, 60%RH, 1,013mbar
750 MW
21.100 kw at 15°C, 60%RH, 1,013mbar
41 ppm at 15% of O ₂

(c) Notices

i) The gas turbine in the Soyo 1 CCGT can fire either gas or diesel oil. The generation started

using diesel oil and then after completion of the pipeline, the fuel was changed to gas. As of January 2018, completion inspection for 3 of 4 gas turbines has been completed. Construction work is carried out by GAMEC and transferred to PRODEL after completion.

- ii) Sonogas, the constructor of the gas pipeline, completed the construction in October 2017. The pipeline has a 20 inch diameter and runs a distance of 8 km from LNG terminal to Soyo 1 CCGT. The gas supply volume is 114 MMscfd, a little more than one-tenth of the 1,000 MMscfd production capacity of the LNG terminal.
- iii) As for the gas price, the supplier (Sonagas) requires \$5 / MMBtu, while the operation side (PRODEL) requires \$3 / MMBtu. Finally the gas price was agreed as \$3 / MMBtu after negotiations.
- iv) The price of diesel oil is the same as that used in other areas of Angola.
- v) The National Bank of China is financing the Soyo 1 CCPP project.
- vi) Land for extension of the thermal power plant has already been prepared. Since the land Soyo 1 CCGT occupies is designated as an industrial zone by the government, the plants in the area (excluding a thermal power plant) will be continuously developed and the land occupied by the industrial zone will be expanded in the future.
- vii) The Soyo 2 CCGT is the only thermal power plant that construction is decided. Development of Soyo 2 is planned by IPP, and concession was given to an Angolan domestic capital (AE Energia). However, issues such as law improvement and PPA for IPP development are still remained, and the specific development schedule has not been determined.
- viii)At present, Sonangol is developing a Gas Master Plan. The plan calls for the development of a gas pipeline from Soyo LNG Terminal to a number of Angola's big port cities such as Luanda, Benguela, and Namibe, gas transportation by railway, and conversion from diesel oil to natural gas at the existing diesel power plants.
- ix) Some 570 persons are working on the construction of Soyo 1 CCPP, of whom 55% are locals.

(d) Photographs

View of Soyo 1 CCGT from the access road

No. 4 gas turbine

Steam turbine building

400 kV GIS

6.2 Current power development plan

There is no power development plan issued at present, and the year of development for each candidate generation plant necessary to meet the demand increase is undetermined.

A study on candidate generation plants has been conducted (listed in "Energia 2025"). Meanwhile, GAMEK is carrying out the design of the candidate power plants and revising the initial plans in the study. Therefore, GAMEK's design is currently the latest plan.

(1) Candidate projects for hydropower

Candidate hydropower projects are listed in Table 6-7. Among these projects, large-scale projects above 2,000 MW, that is, the Lauca and Caculo Cabaca hydropower stations, have already reached the construction stage. The progress of the other alternatives ranges from the project-finding stage to feasibility study stage. Therefore candidate projects of the 1,000 MW class still remain in the list. Meanwhile, the number of large-scale projects is limited. The total installed capacity of the candidate projects, including medium- to small-scale projects, is only about 10 GW.

		Table 6-7					
be	Plant name	Owner	Location		Installed	Project cost	Nete
Type			Area	Province	capacity (MW)	(Mill. USD)	Note
	Lauca	PRODEL	North	Malanje	2,067	4,300	
	Caculo Cabaça	PRODEL	North	Kwanza Norte	2,100	4,500	
	Zenzo	PRODEL	North	Kwanza Norte	950	N/A	
	Tumulo do Cacador	PRODEL	North	Kwanza Norte	453	1,041	
	Cafula	PRODEL	North	Kwanza Sul	403	1,121	
	Genga	PRODEL	North	Kwanza Sul		N/A	
	Benga	PRODEL	North	Kwanza Sul	987	N/A	
	Sanga		North	Kwanza Sul		N/A	
	Quilengue	PRODEL	North	Kwanza Sul	217	N/A	
	Cachoeira		North	Kwanza Sul		N/A	
	Carianga		North	Kwanza Norte	381	1,295	
	Bembeze		North	Kwanza Norte	260	768	
	Quissonde		North	Kwanza Sul	121	838	
	Cuteca		North	Kwanza Sul	203	734	
	Lomaúm (extension)	IPP	Central	Benguela	160	385	
	Cacombo	IPP	Central	Benguela	29	319	
	Calangue	IPP	Central	Benguela	190	471	
Hydropower	Salamba		Central	Bie	48	324	
V 00	Cunje		Central	Bie	8		
rol	Quissuca	IPP	Central	Kwanza Sul	121	567	
[yd	Capitongo		Central	Benguela	41	239	
Η	Calindo		Central	Benguela	58	187	
	Baynes	PRODEL (50%)	South	Namibe	300	660	300 of 600 MW is Namibia
	Mucundi		South	Cuando	74	538	
				Cubango			
	Jamb Ya Oma	IPP	South	Huila	75	500	
	Jamb Ya Mina	IPP	South	Huila	180	710	
	HPP Chiumbe Dala		East	Lunda Sul	8	30	
	Chicapa II (extension)	IPP	East	Lunda Sul	100	N/A	
	Luachimo (extension)		East	Lunda Norte	34	N/A	
	Cuango	IPP	East	Lunda Norte	30	158	
	Luapasso (H.S.Luapasso)	IPP	East	Lunda Norte	25	206	
	Camanengue (H.S.Luapasso)	IPP	East	Lunda Norte	29	173	
	Samuela (H.S.Luapasso)	IPP	East	Lunda Norte	15	93	
				Total =	9,666		

Table 6-7 Candidate hydropower projects

(2) Candidate projects for thermal power

Most of the candidate thermal power projects are planned as expansions or replacements of the existing small- to medium-scale thermal power stations running small diesel or gas turbines. Development for only one large-scale candidate project, the Soyo 2 thermal power station, has been decided. There are no other particular projects planned so far.

(3) **Development plan for renewable energy plants**

Currently only one biomass thermal plant and several small hydropower plants exist as renewable generation plants.

Small hydropower plants are mainly constructed and used for electricity supply to un-electrified areas. A further development by an IPP is planned, but the total capacity of the plan is only about 60 MW.

Regarding biomass generation, one 50 MW power station is in operation. "Energia 2025" describes a new 500 MW development, but the development plan at present is only 100 MW in total, including waste generation.

Regarding solar power and wind power generation, there are no power plants developed so far. Planning for a development based on a potential study has ongoing, however. Table 6-8 and Table 6-9 show the expected candidate projects listed by MINEA. "Energia 2025" describes the development of a 100 MW of solar power project and 100 MW wind power project. Several other plans for candidate projects have been progressed, but these are not included in the abovementioned list. It thus seems that development will be larger scale than the plans stated in "Energia 2025" overall.

No.	Name of Project	Capacity (MW)	Note
1	BENIAMIN	52	Benguela
2	CACULA	88	Huila
3	CHIBIA	78	Huila
4	CALENGA	84	Huambo
5	GASTAO	30	Kwanza Norte
6	KIWABA NZOJI I	62	Malanje
7	KIWABA NZOJI II	42	Malanje
8	MUSSEDE I	36	Kwanza Sul
9	MUSSEDE II	44	Kwanza Sul
10	NHAREA	36	Bie
11	TOMBWA	100	Namibe
	Total	652	

 Table 6-8
 Candidate wind power generation projects

No.	Name of Project	Capacity (MW)	Note
1	BENGUELA	10	Benguela
2	CAMBONGUE	10	Namibe
3	CARACULO	10	Namibe
4	CATUMBERA	10	Benguela
5	LOBITO/CATUMBERA	10	Benguela
6	LUBANGO	10	Huila
7	MATALA	10	Huila
8	QUIPUNGO	10	Huila
9	TECHAMUTETE	10	Huila
10	NAMACUNDE	10	Cunene
	Total	100	

6.3 Preparation for a long-term power development plan by 2040

6.3.1 Setting conditions for an economic evaluations study using PDPAT

(1) Supply reliability

LOLP (Loss of Load Probability) and LOLE (Loss of Load Expectation) are both commonly used as indicators of the supply reliability of a power system. The latter LOLE has been popularly adopted around the world. Considering the sample LOLE values for foreign countries shown below, the target LOLE for the Angola power system is set at 24 hrs/year, that is a value used for many emerging countries.

- ➢ France, UK: 3 hours/year
- Developing country: 5 days/year
- Emerging country: 24 hours/year

(2) **Construction cost of power stations**

The construction cost of a new power station varies widely in accordance with the conditions of the development location. In some cases in present-day Angola, development studies have not been completed for the power stations to be considered in long-term development plans. Accordingly, a standard construction cost for each type of power station is assumed and used for the further study.

Standard construction costs have not been set, however, for wind power and solar power stations. In those cases, therefore, constant power price for all of the generated energy, a price equivalent to the power purchase cost for IPP developers, is adopted.

Туре		unit capital cost (\$/kW)	Note
Hydropower	Large scale	2,700	Average in Angola
Trydropower	Medium/Small	5,400	ditto
T 1 1	Combined Cycle	1,200	Construction cost of SoyoTPP
Thermal power	Gas Turbine	650	International price
power	Diesel	900	International price
D	Wind	-	Considered in generation cost
Renewable	Solar	-	Considered in generation cost

 Table 6-10
 Construction unit cost for each type of power

(3) Fuel types and efficiencies of thermal power plants

The fuel types and heat efficiencies of the different candidate types of thermal power plant are set as shown in Table 6-11.

Type of generation		Fuel type	Heat efficiency (%)
	Combined Cycle	NG, LPG, LNG	56%
TT1 1	Gas Turbine	NG, LPG	38%
Thermal power		LFO	36%
power	Diesel	LFO	42%
	Biomass	Bio fuel	30%

 Table 6-11
 Fuel types and efficiencies of thermal power plants

(4) **Conditions for economic evaluation**

There are no fixed ways to evaluate the finances of the power stations in Angola. Therefore, general calculation method and conditions for the calculations are adopted as shown in Table 6-12.

Type of generation		Lifetime (years)	Depreci- ation	Interest (%)	Salvage (%)	O&M others (%)	Annual Expenditure Rate (%)
Hydropower	Hydropower					1	11.2
	Combined Cycle	25	Straight	10	0	3	14.0
Thermal	Gas Turbine	20				5	16.8
power	Diesel	20	line			5	16.8
	Biomass	20	method			2	13.8
Renewable	Wind	20				1	12.8
Kenewable	Solar	20				1	12.8

 Table 6-12
 Conditions for financial evaluation

(5) Forced outage rate

Recent records of the forced outage rates of the existing power stations, that is the rates of stoppage hours per year (excluding scheduled maintenance), are shown in Figure 6-7. The forced outage rates for both hydropower and thermal power have been on downward trends. As of 2017, the rates for thermal power and hydropower stood at about 8% and 2%, respectively. It seems feasible to maintain the current level in the future. These current records are adopted for the development planning.

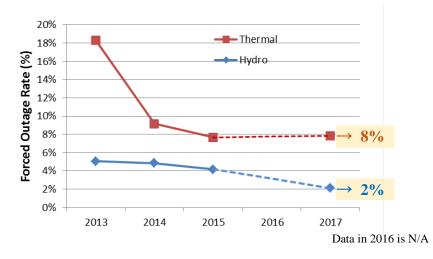


Figure 6-7 Actual records of the forced outage rates of power stations

(6) Calorific values and greenhouse gas emissions of thermal power

The calorific values and greenhouse gas emissions of the different fuels used for thermal power generation are assumed to be the general values shown in Table 6-13 below.

Fuel	Calorific value (kcal/kg)	CO ₂ emission (kg-C/1000kcal)		
LNG	13,000 kcal/kg	0.05735		
NG	9,800 kcal/m ³	0.05735		
LPG	12,000 kcal/kg	0.06857		
HFO	9,200 kcal/L	0.08087		
LFO	9,100 kcal/L	0.07865		
Biomass	1,200 kcal/m ³	-		

 Table 6-13
 Calorific values and greenhouse gas emissions per unit for different fuels

(7) Fuel cost

Future fuel prices for thermal power for the long-term power development planning in this study are set based on the current international price and the IEA's long-term forecast for the New Policy Scenario, as shown in Table 6-14 below.

					unit: U	JScent/Mcal
Year	Crude Oil	LFO	HFO	LPG	NG	LNG
2015	3.281	3.948	3.919	4.041	1.036	4.087
2016	3.641	4.382	4.349	4.485	1.155	4.032
2017	4.001	4.815	4.780	4.928	1.275	3.976
2018	4.361	5.249	5.210	5.372	1.394	3.921
2019	4.722	5.682	5.640	5.816	1.514	3.865
2020	5.082	6.116	6.071	6.259	1.633	3.810
2021	5.288	6.363	6.316	6.513	1.685	3.901
2022	5.494	6.611	6.562	6.766	1.737	3.992
2023	5.699	6.859	6.808	7.020	1.789	4.083
2024	5.905	7.107	7.054	7.274	1.840	4.175
2025	6.111	7.354	7.300	7.527	1.892	4.266
2026	6.317	7.602	7.546	7.781	1.944	4.357
2027	6.523	7.850	7.792	8.034	1.996	4.448
2028	6.729	8.097	8.038	8.288	2.048	4.540
2029	6.934	8.345	8.284	8.541	2.099	4.631
2030	7.140	8.593	8.529	8.795	2.151	4.722
2031	7.224	8.694	8.629	8.898	2.211	4.742
2032	7.308	8.794	8.729	9.001	2.271	4.762
2033	7.391	8.895	8.829	9.104	2.330	4.782
2034	7.475	8.995	8.929	9.207	2.390	4.802
2035	7.558	9.096	9.029	9.310	2.450	4.822
2036	7.642	9.197	9.129	9.413	2.510	4.841
2037	7.726	9.297	9.229	9.516	2.569	4.861
2038	7.809	9.398	9.329	9.619	2.629	4.881
2039	7.893	9.499	9.428	9.722	2.689	4.901
2040	7.977	9.599	9.528	9.825	2.749	4.921

Table 6-14Fuel price for development planning

6.3.2 Selection of the generation type for use in development planning

Hydropower development has so far played the main role in development plans. As the potential of large hydropower remains and the generation costs are lower, constant development in the future is preferable. Meanwhile, even if priority is given to the development of large-scale hydropower, the supply capacity seems to be insufficient over the medium to long term. Hence, the development of power sources in addition to hydropower projects will be needed. The optimization of an

economically superior power source composition will therefore have to be considered. When selecting the candidate power types using the screening method described in Chapter 4, the conditions set in section 6.3.1 are used. The annual expenditure of each type of generation in the years 2018 and 2040 are shown in Figure 6-8 to Figure 6-11.

As a result of the examination discussed below, gas turbine (LPG), combined cycle (natural gas), and large hydropower are selected as the major types of candidate generation facility to be used in this master plan.

(1) **Peak supply**

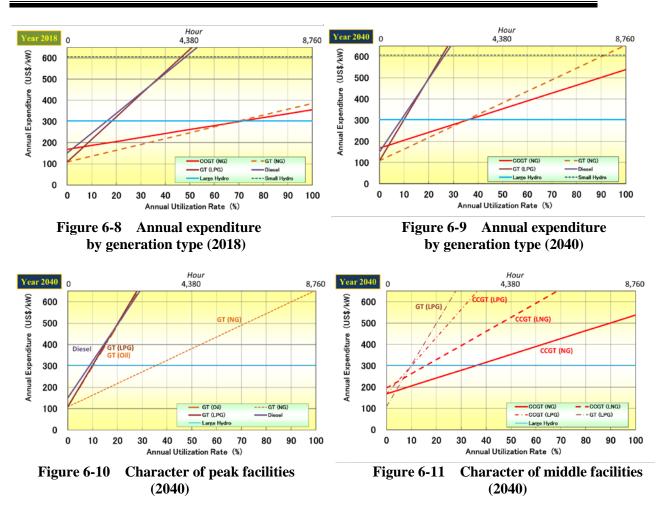
Since the fuel cost of natural gas is somewhat lower, thermal power facilities using natural gas have an advantage for peak suppliers. Meanwhile, natural gas supply is currently available only at Soyo which is far from the demand center, and huge cost and time would be required for the development of gas supply facilities such as a new pipeline or new gas field. For the development of a peak supplier at a location other than Soyo, it will therefore be necessary to consider another type of fuel (LPG, Diesel oil etc.) that can be more easily transported as a realistic option.

Diesel and gas turbine (GT) are available as candidates for peak supply power using these gases as fuel, and GT is economical. Also, the difference between the use of diesel and LPG as fuel for GT is small (see Figure 6-10). Therefore, GT is selected as the peak supplier, and LPG is selected as fuel by virtue of the easier transport and facility maintenance associated with LPG.

Pumped-storage power plants (PSPP) are generally regarded as candidates for peaking power supply. At present, however, the effect of introducing PSPPs cannot be evaluated, as no low-cost or surplus electricity is available for pumping up water. It will be preferable, therefore, to evaluate the needs for PSPP in accordance with changes such as the generation cost reductions for solar/wind power and the introduction of large-scale development policies to combat global warming.

(2) Middle supply

Combined cycle gas turbine (CCGT) using natural gas for fuel is the most advantageous from an economic view point. Given the aforementioned supply restriction of natural gas, however, it will be necessary to consider the use of LPG/LNG as fuel for CCGT. In consideration of the choice of fuel, therefore, CCGT is taken as a promising candidate for the middle supply.


(3) Base supply

Large-hydropower is adopted as the base supplier.

The project cost and generated energy of a hydropower station vary widely in accordance with the site conditions. The light blue lines in the figures show the average of large hydropower based on Angola's development plans.

The average of medium/small-scale hydropower is also shown in the figures. As the annual expenditure of medium/small-scale hydropower is higher than that for other power sources, the preferred approach is to first evaluate economic characteristics of the particular plans individually and then decide on development when the project is found to be economically advantageous or when other factors such as remote locations would make it difficult to supply electricity by other mean. Therefore, medium/small scale hydropower is excluded from consideration in this master plan.

The Project for Power Development Master Plan in the Republic of Angola Final Report

6.3.3 Basic conditions for optimization of development plan

The optimization study on the development plan will be conducted by applying PDPAT. The specifics of development planning and optimization will be studied under the following conditions.

(1) **Candidate projects**

The existing candidate projects listed in the development plan basically take priority, though there are few thermal power candidates with large-scale and high-efficiency. In the event of any shortage of candidate projects, a dummy project will be introduced.

(2) Monthly hydropower generation

Monthly generation data should be prepared for each hydropower station as a necessary step for the optimization studies using PDPAT.

Since river discharge in Angola changes widely in a year as described in section 6.1.2, it is necessary for a study of supply demand balance to prepare expected monthly generation of each hydropower station considering regulation effect of the reservoir. The following factors, however, make it difficult to prepare all of the necessary monthly inflow and generation data for each hydropower station under a uniform condition.

- Actual records on parameters such as the inflow discharge and generation of existing power stations have not yet to be organized and in some cases are missing.
- The monthly generation has not yet been planned for many of the candidate projects, especially the projects not yet extensively studied.

In consideration of the current situations, the expected monthly generation of each existing and candidate hydropower project is estimated by simple simulation study based on the available project features and typical river discharge data of the hydropower station as assumption.

6.4 The most economical power supply configuration in 2040

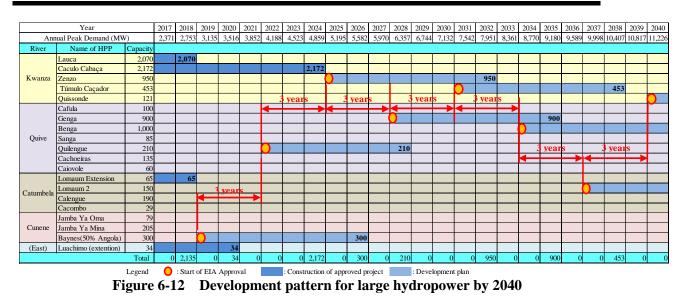
A study on the most economical power supply in the year 2040, the final year and achievement point set under the long-term power development plan, has been conducted using PDPAT based on the currently existing power supply facilities. Necessary power supply will be developed to meet the demand increase in consideration of the retirement of aged power facilities. The power sources to be newly developed in the study are (1) gas turbine (LPG fired), (2) combined cycle (natural gas fired), and (3) large-scaled hydropower, (the sources selected in the previous section).

6.4.1 Hydropower development plan

As described in section 6.3.2, since the potential of large hydropower remains and the generation cost is lower, constant development in the future will be preferable.

There are however, important issues to address in the development of large-scaled hydropower.

- > Fund procurement is a challenge since project cost is enormous.
- Natural and social EIAs are essential. Mitigation measures according to local conditions are required even if development is evaluated as appropriate.

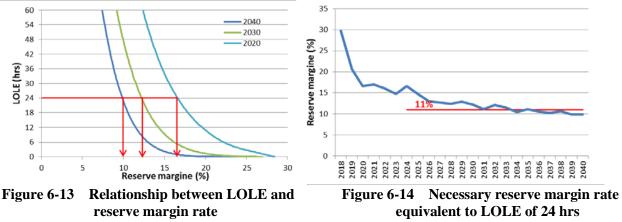

As both of the aforementioned issues require time-consuming steps in the procedures required to have project implementation improved, there are limits in reality to the number of simultaneous developments possible.

Therefore the largest/earliest hydropower development plan, thought to be feasible for development in this master plan, is set based on the following assumptions.

- ➤ The interval between new developments is set as 3 years in consideration of approval procedures etc.
- ➢ In order to avoid risks such as delays due to congestion of construction work, the construction of simultaneous projects at one river is avoided as much as possible. (If one power plant is constructed at each of the four major rivers where hydropower plants are planned, a maximum of four construction works will be conducted in parallel).

> The duration of construction is 8 years, including 1 year for EIA approval procedures.

Figure 6-12 shows the development pattern for hydropower up to 2040 (prepared in consideration of past development plans).


6.4.2 Relationship between LOLE and Reserve Capacity

LOLE, an indicator of the reliability of a power system, is not directly related to the power supply capacity (MW). For that reason, LOLE cannot be used to easily grasp how much power supply capacity needs to be developed in a power development plan to secure reliability. In Japan, the reserve margin rate is generally used instead of LOLE. The common practice is to obtain the relationship between the reserve margin rate and LOLE in advance, convert LOLE to the reserve margin rate, find the required supply capacity, and use it for the power development planning.

The reserve margin rate corresponding to the 24-hour of LOLE is formulated by PDPAT and RETICS. For the power development plan, the plan shown in Figure 6-12 is adopted for the hydropower development. Thermal power, which consists of CCGT and GT, will be developed to fill up the insufficient supply capacity. The composition ratio between CCGT and GT was set to the optimum ratio described in the next section. The relationship between LOLE and the reserve margin rate is calculated based on the above-mentioned development plan.

The calculation results are shown in Figure 6-13 and Figure 6-14. While the required reserve margin rate generally increases as the target LOLE gets smaller, this relationship varies in accordance with the power supply configuration, demand profile, etc. Figure 6-14 shows the necessary reserve margin rate for each year up to 2040. The required reserve margin gradually decreases, reaching about 11% after 2030. This value, 11%, is therefore set as the target.

The decrease in the required reserve margin rate year by year is mainly attributable to the yearly increases in the share of thermal power supply capacity and gradually decreasing influence of hydroelectric power generation with large variations due to river discharge fluctuations.

6.4.3 Most economical power supply composition ratio by using PDPAT

In this section, the power supply composition that minimizes the total cost in the year 2040, the final year of the power master plan, is considered.

As described in Chapter 5, peak demand in 2040 is forecasted to reach 11.2GW, or 2.7 times the actual peak demand recorded in 2017. Moreover, renovation of the existing power facilities is also required. Hence, the requirement of supply capacity appears to increase 13 GW. In this section, the most economical configuration in 2040 among large hydropower, combined cycle (CCGT), and gas turbine (GT) is examined.

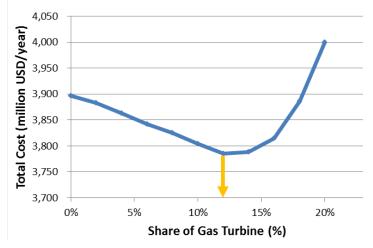
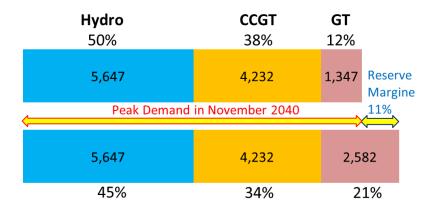
The following assumptions are adopted for the calculation using PDPAT

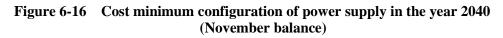
- \succ The target year is 2040
- The hydropower development pattern shown in 6.4.1, a realistic equivalent to the maximum, is adopted.
- ➤ The reserve margin rate is set at 11%, is the value selected in 6.4.2. GT shares the capacity for the reserve margin, as it has a lower fixed cost.
- > The supply configuration ratio is calculated in the month with the lowest reserve margin in the year and defined as the ratio of the available supply (excluding the capacity corresponding to the reserve margin) of each power source to the peak demand of the month.

(1) **Optimum share of GT**

Figure 6-15 shows the relation between the total cost per year and the configuration ratio of GT, calculated using PDPAT. The annual cost is lowest when the configuration ratio of GT is 12%. When the ratio exceeds 12%, the cost sharply rises because the increased generation using the lower-efficiency GT pushes up the fuel cost. It seems therefore reasonable to set the configuration ratio of GT at 12%, and not to exceed that level in the development plans.

It is economical for GT, the power source with the lowest fixed cost, to share the supply capacity for the reserve margin, so the combined amount capacity of GT makes up 23% of the demand.


Figure 6-15 Configuration ratio of GT and total annual cost (year 2040)

(2) Minimum-cost configuration of power supply in the year 2040

Peak demand in the year 2040 appears in December. Meanwhile the supply-demand balance is the most severe in November in a year, since the supply capacity of hydropower declines during the drought period. Figure 6-16 shows the power configuration ratio when the ratio of GT is set to 12% in the November 2040 section. This configuration ratio corresponds to the future target value, and the

final power development plan formulated for each year up to 2040 needs to approach this power configuration ratio.

6.5 Formulation of the power development plan

6.5.1 Power development plan (Draft) by 2040

The power development plan (draft) for each year up to 2040 is formulated based on the following conditions. Figure 6-17 shows the proposed draft plan.

- ➤ The types of power plant newly developed are large hydropower, combined cycle (CCGT), and gas turbine (GT).
- ➤ The Reserve margin rate is set as 11% in November, when the supply-demand balance is strict. The supply shortage is acceptable, however, since new development will not be available in time by 2018.
- > The retirement of power facilities at the end of their service lives is taken into account to the power supply capacity.
- Available supply capacity of hydropower calculated by PDPAT is used for evaluation of supply-demand balance every month.
- The development pattern shown in Figure 6-12 is adopted for hydropower development. If the supply capacity is still insufficient, a thermal power plant (GT, CCGT) will be developed.
- ➤ The configuration ratio of GT is set close to 12%, within a range not exceeding 12% of demand. The shortfall capacity is filled by CCGT.

As a result of the trial, the following developments of power facilities are required by 2040.

Hydropower: 7,150 MW, including the Lauca HPP now under construction

CCGT: 4,125 MW (750 MW class, 5.5 sets), including Soyo and Soyo2 TPP

GT: 2,250 MW (125 MW class, 18 sets)

The Project for Power Development Master Plan in the Republic of Angola Final Report

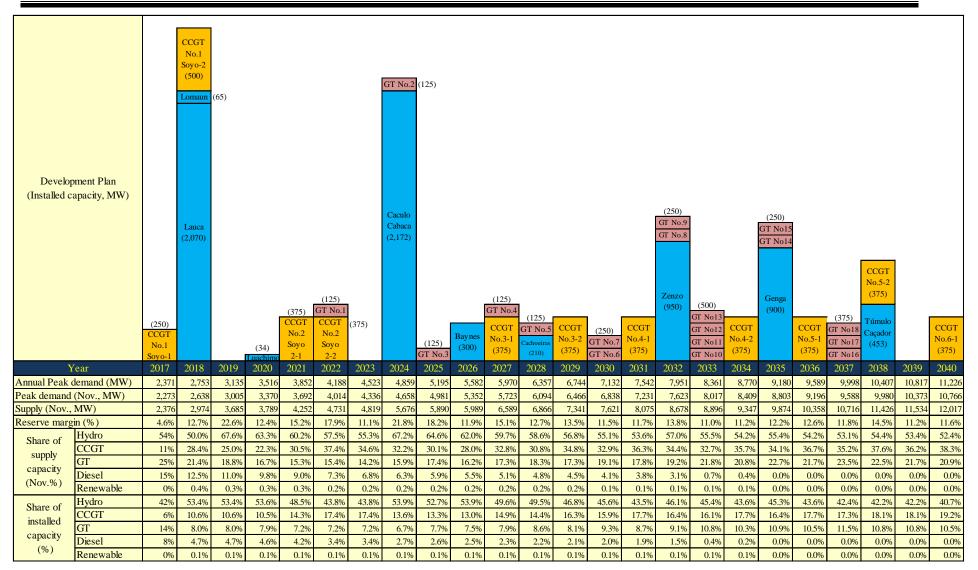
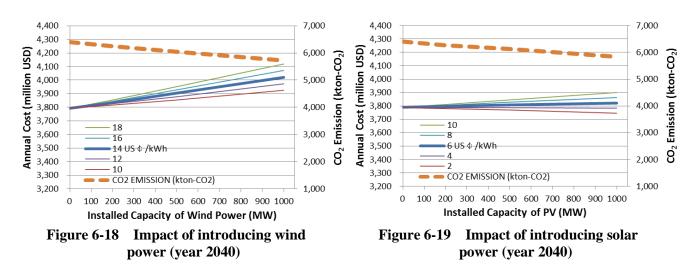


Figure 6-17 Power development plan (Draft)

6.5.2 Impact of introducing renewable energy

As stated in Section 6.2(3), Angola is aiming at introducing wind power and solar power generation. At present, eleven (11) wind power projects (652 MW) and ten (10) solar power projects (100 MW) are nominated as priority candidates.


These project plans, however, have only reached preliminary phases. Because of this, the specifications of each project necessary for evaluating the supply-demand balance, such as expected monthly generation etc., have yet to be made public. Since the output of wind/solar power generation fluctuates with changes in natural conditions, a detailed evaluation based on measured data will be required for an accurate determination of the capacity is available to be counted towards the available peak supply capacity. It will be indispensable to evaluate feasibility and establish specific generation plan for each project in the future.

In this section, assuming supply capacity based on the proposed installed capacity and average plant factor, and then impact of introducing wind/solar power to the greenhouse gas reduction and the influence on the annual total cost increase of the development plan (Draft) described in the previous section are examined. (Comparison was made in the year 2040).

As a result, the introduction of wind/solar power is effective for greenhouse reduction as shown by the orange broken line/right axis in Figure 6-18 and Figure 6-19, since CO_2 emission decreases in step with increases in the wind/solar power capacity.

In this examination, generation cost is indicated by parameters centered on current cost (wind power, 14 UScents/kWh; solar power, 6 UScents/kWh) as assumption. The impact on the annual total cost depends on the generation cost for both wind and solar power. When 1000 MW is installed with the central cost, the increase of the annual total cost is slight for solar power, and stand at 5% for wind power.

Meanwhile, the reduction of greenhouse gas emissions by introducing renewable energy is an important policy in Angola. Further, the small capacity of the prioritized projects translates into a small influence on the development plan overall. Therefore, a power development plan including the prioritized wind/solar project is prepared and set as the basic plan.

Regarding biomass, project concepts have been conceived but no specific power generation plans have been determined. Hence, biomass will not be evaluated until a plan is concretized in the future. Biomass will thus be left out of the current development plan, as in the case with small and medium hydropower.

6.5.3 Power development plan with renewable energy (base plan)

(1) **Power development plan**

Power generation plan including wind/solar power has been established based on the draft plan described in the previous section.

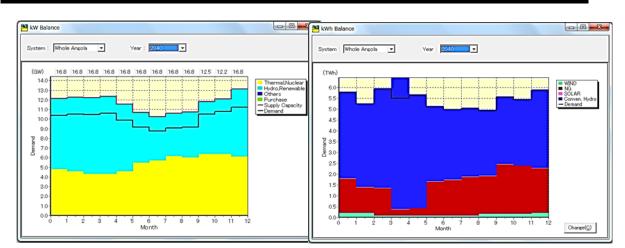
Since the plan for wind/solar power is still in the preliminary stage, the nominated projects are assumed to develop during 10 years from 2028 after a planning period of ten years. The examination indicated no change in the development plan for thermal power and simply adding the wind/solar power projects to the draft plan becomes the optimum. This development plan is set as the basic plan.

The generation outputs of wind/solar power projects fluctuate widely since wind speed and solar radiation change under changing natural conditions. Output adjustments according to the requirements are therefore unavailable, and the available capacity necessary to secure the supply-demand balance is expected to be far smaller than the installed capacity. Also, the peak of electricity demand occurs at night, when solar power cannot generate. If on the other hand, the dispatching conditions are met, hydropower generation can be increased during the peak period as follows: (1) Store the water in the reservoir by reducing the generation of hydropower in accordance with the wind/solar generation, then (2) increase hydropower generation during peak periods using the stored water. Introducing wind/solar power projects into the power development plan is a complicated task. It will therefore be necessary to estimate the expected available monthly generation and hourly output for each candidate wind/solar power project. For the purpose, investigation and evaluation of the characteristics of hourly fluctuation of each month based on statistical review of the exact data of each planned location are desirable.

As of this time, however, none of the data necessary for evaluation is available. For this reason, the expected output in each hour of each month is assumed based on the installed capacity and average plant factor, making reference to the general characteristic values. Based on these assumed values, examination using PDPAT is conducted to grasp the influence. It will therefore be necessary to revise the power development plan when the design of each candidate project advances and specific generation plans are studied.

(2) **Output of supply-demand simulation using PDPAD (base case)**

Figure 6-20 to Figure 6-25 show the supply-demand balance in each month in 2040, the final year of the master plan, and an example of the load dispatching for one day.


(3) **Power development of each year by 2040**

The recommended power development plan, the base plan, is shown in Figure 6-26. The supply-demand balance of the most severe month in each year by 2040 is shown in Figure 6-27. The share of hydropower in the peak supply configuration decreases year by year, and hydropower and thermal power are about the same size in 2040.

Figure 6-28 shows the relationship between the maximum demand in a year and the installed capacity of the power stations, for reference. As the available supply capacity of hydropower is restricted by season, the amount of installed capacity exceeds the demand in the figure. In fact, however, the available supply capacity is sometimes lower than installed capacity by season. The evaluation of the supply-demand balance will therefore have to be based on the most severe month of the year, as shown in Figure 6-27.

The power generation cost for each year and the unit cost per kWh are shown in Figure 6-29 and Figure 6-30, respectively. The annual power generation cost increases year by year as the supply capacity increases in step with demand increases. The fuel cost will also gradually rise. On the other hand, the unit price remains stable over the long term.

The Project for Power Development Master Plan in the Republic of Angola Final Report

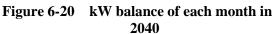


Figure 6-21 kWh balance of each month in 2040

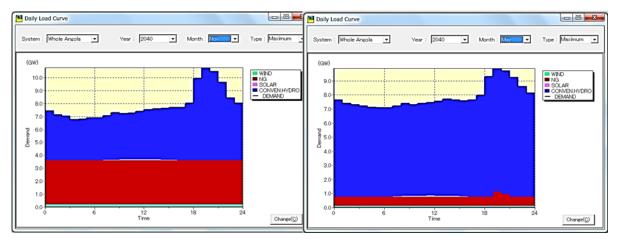
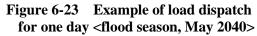



Figure 6-22 Example of load dispatch for one day <dry season, November 2040>

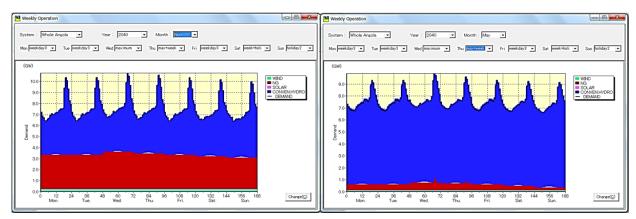


Figure 6-24 Example of weekly load dispatch <dry season, November 2040>

Figure 6-25 Example of weekly load dispatch <flood season, May 2040>

The Project for Power Development Master Plan in the Republic of Angola Final Report

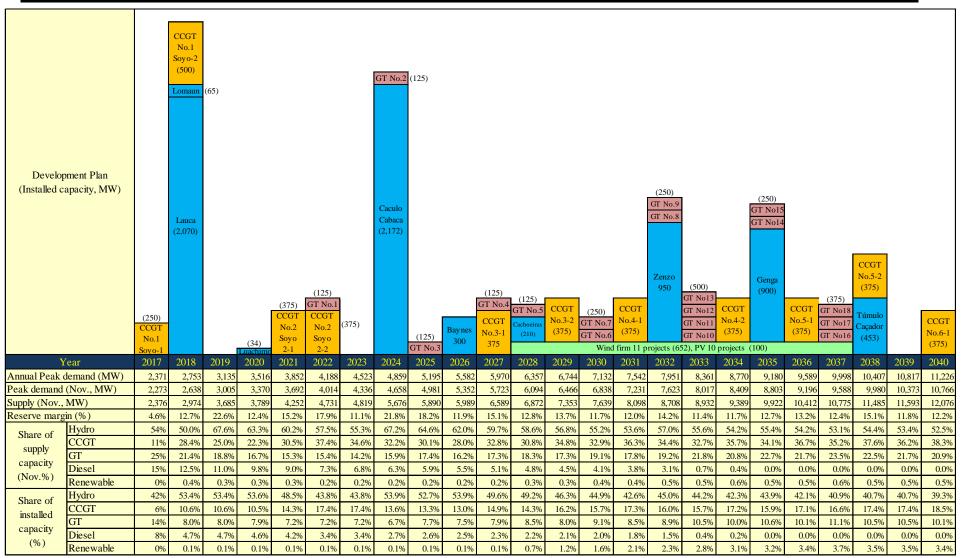


Figure 6-26 Power development plan (base case)

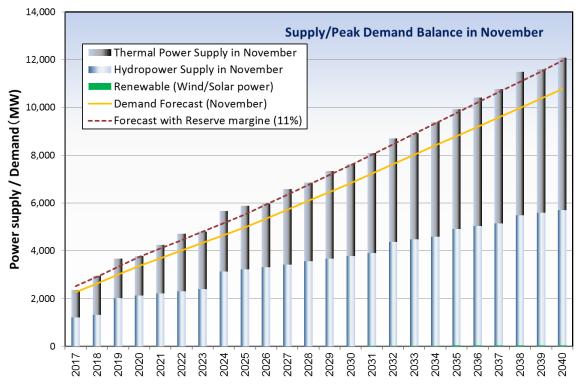


Figure 6-27 Supply-demand balance (base case, peak balance in November)

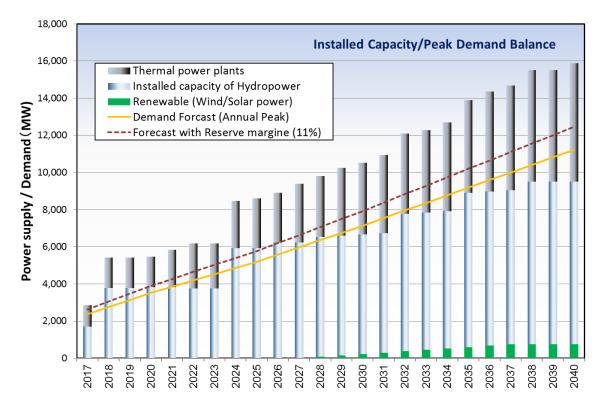
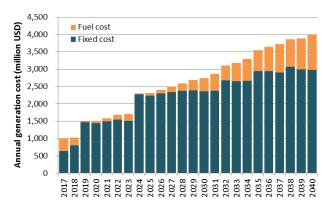



Figure 6-28 Supply-demand balance (base case, installed capacity-annual peak balance)

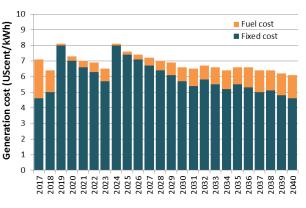


Figure 6-29 Annual generation cost (base case) Figure 6-30 Unit cost of generation (base case)

6.5.4 Greenhouse gas emission in the base case

The annual amount of greenhouse gas emissions produced each year by power generation type is shown in Figure 6-31. As the figure illustrates, annual emissions are greatly reduced by the new development of large hydropower, while on the whole greenhouse gas emissions are on an increasing trend due to the increases in thermal power generation and electric power demand.

The figure also shows the impact of the introduction of wind/solar power (capacity: 752 MW in total) to the total emission. The amount of reduction in 2040 resulting from introduction of wind/solar power is about 600 kt-CO₂ (about 10%). The introduction mitigates the rise in emissions, but not enough to reverse the trend of overall increase. To suppress the increase in emissions, a larger scale of development will be required for renewable energy (wind /solar power) or hydropower.

Figure 6-32 and Table 6-15 show greenhouse gas emission from Angola's Intended Nationally Determined Contribution (DRAFT INDC) and that from power generation. The share of greenhouse gas emissions from power generation is low, totaling only about 3% (in 2030) of the assumed value of the "Conditional scenario" (target value) of INDC.

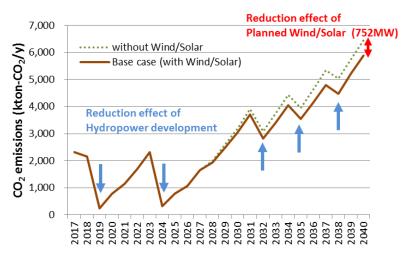


Figure 6-31 Greenhouse gas emission (base case)

(Irton CO (rease)

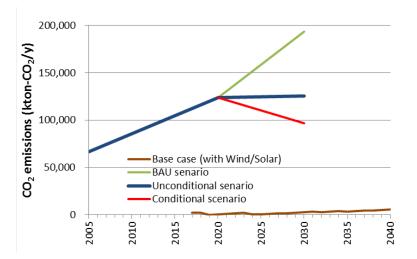


Figure 6-32 Angolan reduction plan (DRAFT INDC) and base case emission

				(1	$(1)^{-CO_2/year}$	
		2005	(2017)	2020	2030	
	BAU scenario		(112,400)		193,250	
Draft INDC	Unconditional scenario	66,812		125,778	125,612	
	Conditional scenario				96,625	
Expected emission from power generation (base case)		-	2,300	800	3,000	

Remark: INDC value in 2017 is interpolated between 2005 and 2020

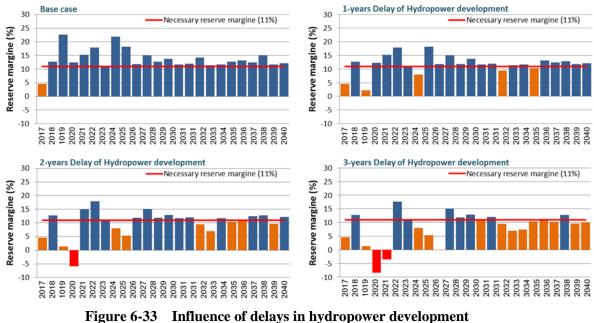
6.6 Scenario case studies

6.6.1 Setting the scenario

A number of case studies have been conducted based on the proposed power development plan discussed in the previous section as a base case scenario (base case). The background and focal points of these studies are as follows.

- > Delays in the development schedules for the power stations
 - Process delays in power development have a great influence on the optimum power supply configuration. In the case of Angola, since the development scales of hydropower projects are large, the delay in hydropower development compounds the negative impacts on the reliability of the power system.
 - ♦ Development of hydropower projects are often subject to delays all over the world. This risk is never small.
 - ♦ Another power source such as CCGT can conceivably be developed as an additional mitigation measure, but doing so would increase greenhouse gas emissions. The degree of influence is therefore considered in the study.
- Development location of CCGT
 - The fuel price of natural gas for CCGT is relatively low. At present, 400 kV transmission lines with a capacity of 2,000 MW (N-1 criteria) have already connected Soyo and Luanda. Soyo, the fuel supply point, is therefore the most economical location for development of CCGT.
 - ☆ The third and subsequent developments, however, require additional 400 kV transmission lines, which is costly. The transmission loss also increases when electric power is transmitted from Soyo to Luanda, and even to Benguela, a demand center in the central area. Taking these points into consideration, the promotion of development at Soyo after the third project does not always seem to offer economic advantages. In addition, the

power flow of the power transmission system becomes a one-sided flow from north to south, which is unfavorable for system stability.


- ☆ As a countermeasure against these issues, CCGT could conceivably be developed near a demand center, especially Lobito port which is near Benguela, and/or Namibe port, which is near the south demand center. In that case, however, as mentioned in Chapter 3, it would be desirable to adopt LPG for the fuel for CCGT until a supply system for natural gas / LNG is established (first step). In such a scenario, greenhouse gas emissions would increase by an estimated 20% compared with LNG. This emission increase must be considered as a factor.
- > Additional development of renewable energy
 - ☆ As stated in Section 6.5.4, greenhouse gas emissions in the base case are greatly increased by the development of power sources due to increased demand. Though the emissions from power generation are relatively small compared to the Draft INDC, a case with reduced emission is examined.
 - ☆ The development of large hydropower effectively reduces, but large hydropower is hampered by the various restrictions as stated in Section 6.4.1 and is practically difficult to develop in a short period.
 - ♦ Accordingly, a scenario to develop additional wind /solar power generation is examined in this section.

6.6.2 Delays in the development of the power stations

(1) Risk of delays in hydropower development

When the start of operation of a hydropower station is delayed, the supply power is reduced. Figure 6-33 shows the supply reserve ratio when hydropower development is delayed by 1, 2, and 3 years. Year when supply reserve cannot be secured are shown in orange in the figure, and years when the supply power is below demand are shown in red.

This examination reveals that the supply capacity decreases with development delay, and that the influence of delays is substantially larger in the nearest years. This conspicuous impact of delay seems to stem from the large scale of the hydropower relative to the demand scale. As the delay increases, the influence increases. Measures should therefore be promptly taken as soon as a delay is foreseen.

(2) Risk of demand rises (equivalent to delay of hydro/thermal power development)

As in the preceding section, the effect in the case where the electric power demand exceeds the assumed value was examined. This is equivalent to the case where there are delays in the development of not only hydropower but in all the power sources including thermal power plants.

- > Demand rise one year forward (= one-year delay of new power station development)
- Demand rise two years forward (= two-year delay of new power station development =one-year development delay+ one-year demand rise)
- Demand rise three years forward (=three-year delay of new power station development =two-year development delay+ one-year demand rise
 - = one-year development delay+ two-year demand rise)

The reserve margin ratio for each case is shown in Figure 6-34. The supply reserve is reduced to about half of the required amount in almost all the subsequent years when the demand rise is forwarded by more than two years (power development is delayed by two years), which makes stable supply impossible. Moreover, a remarkable supply shortage continues when the demand rise is forwarded by three years. When the actual demand exceeds the assumed demand, therefore, the development plan must be revised from the next year to secure supply capacity.

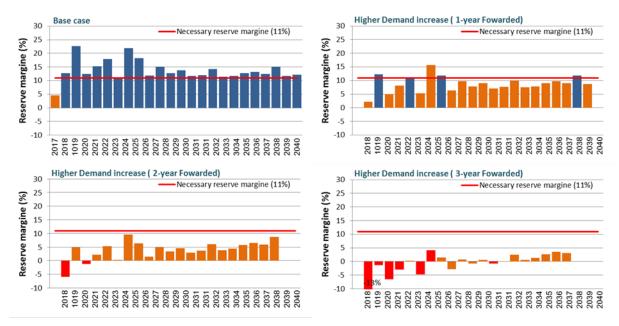
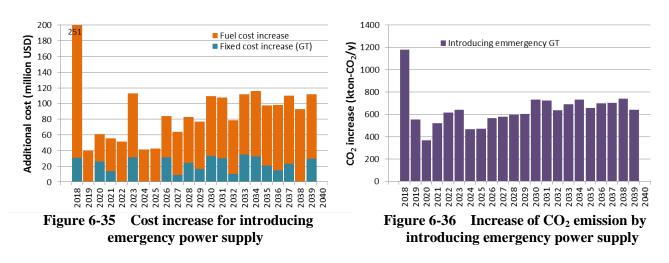



Figure 6-34 Influence of demand rise (=delay in the development of all power station types)

(3) Mitigation measures and its influence

If the electric power demand fluctuates more than one year (or the start of the power plant operation is delayed for one year), measures such as the introduction emergency power supply should be implemented as soon as possible. In this section, additional cost and increase of CO_2 emission, in the case additional GT generated by LPG for fuel is introduced as an emergency measure, are examined.

As a result, the influence continues for longer than a single year. As shown in Figure 6-35 and Figure 6-36, expenses rise and greenhouse gas emissions increase. These increases appear continuously until the supply capacity is secured. Countermeasures must therefore be taken as soon as such an event is foreseen, including revision of demand forecasts and the power development plan itself.

6.6.3 Development location of CCGT

(1) **Conditions and issues**

Regarding the development plan for thermal power, the Soyo 2 TPP is posted after complesion of the Soyo TPP currently under construction, but no specific plans follow. Specific plans have also yet to be formulated for the fuel supply, an issue with an important bearing on the siting of the CCGT thermal power plant.

As described in Section 6.6.1, the capacities of the existing 400 kV transmission line between Soyo and Luanda are 2,000 MW (N-1 criteria) in total, which is sufficient to transmit power from up to two of 750 MW-class plants. From the third plant onward, however, additional transmission lines will have to be constructed. Moreover, an uneven distribution of power generation equipment only in Soyo would be disadvantageous from the viewpoints of system stability and transmission loss.

Regarding fuel, Soyo is currently the only location available source of gas supply. It will therefore be necessary to consider the procurement plans for fuel when development of a TPP in another area. When plans call for the development of CCGT thermal power plants in the central/south areas, in particular, it will be necessary to consider a scheme for gradual fuel switching (see Section 3.5.4).

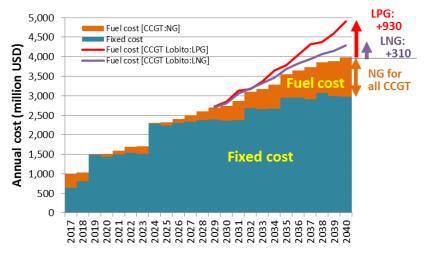
Table 6-15 shows general pros and cons in the case where the locations of future thermal power plants are concentrated in the northern part (Soyo) and when decentralized layout is taken.

Table 6-16 Pros and cons of the locations set for thermal power							
Concentrated layout in North	Decentralized layout						
(Soyo)	(Soyo, Benguela)						
 Efficiency improvement is available since the location is near existing gas supply facilities. A larger area will be needed. The availability of natural gas supply must be confirmed. 	 : Location selection will be easier if the use of more easily transportable fuels such as diesel oil is acceptable up to completion of the natural gas supply facilities. : Newly developed fuel supply facilities are needed. : Availability of fuels (oil, gas). 						
 Temporary use of existing transmission lines will be possible. As large power plants are located only in the north, there appears to be a need for strengthened transmission lines. 	 The power flow is relatively smaller since power sources are located nearby both to the north and south of the demand center Transmission lines will have to be developed to connect the new power stations to the power grid. 						
-: Depends on the location.	-: Depends on the location.						
 Cost reduction is expected since the generation/fuel supply facilities are located nearby. The transmission loss and cost for additional transmission lines are higher. 	 Rescheduling of works to reinforce the transmission lines is expected. The cost of fuel supply facilities appears to be higher. The need for integration of a port needs to be confirmed. 						
\times : The concentrated layout heightens the risks to fuel procurement and reduces the power supply reliability.	 A risk diversification effect can be expected compared to the concentrated layout 						
 Early development can be expected if the neighboring area is available for the new power plants. Early utilization will be restricted if there are limits to the natural gas supply for generation fuel. 	 Early development is expected if heavy oil is used as the primary fuel (because a suitable location for the power plants would be easier to find). If the location of the power plants is near an oil refinery facility, the use of light fuel, etc. will be an available option. Any delay in the development of the refinery facilities would lead to further delays in TPP commencement. 						
	 Concentrated layout in North (Soyo) : Efficiency improvement is available since the location is near existing gas supply facilities. × : A larger area will be needed. : The availability of natural gas supply must be confirmed. : Temporary use of existing transmission lines will be possible. × : As large power plants are located only in the north, there appears to be a need for strengthened transmission lines. : Cost reduction is expected since the generation/fuel supply facilities are located nearby. : The transmission loss and cost for additional transmission lines are higher. × : The concentrated layout heightens the risks to fuel procurement and reduces the power supply reliability. : Early development can be expected if the neighboring area is available for the new power plants. 						

Table 6-16Pros and cons of the locations set for thermal power

 \bigcirc : Advantages \times : Disadvantages ? : Uncertain issues

(2) **Candidate locations**


If a new gas pipeline is laid, this location is advantageous because it will be possible to use cheap natural gas for fuel. On the other hand, a long time and huge cost would be required for the construction of a new gas pipeline. It would therefore be inappropriate to set pipeline as a condition for selection of site location at the present. Here, Lobito and Namibe are recommended as candidate locations that satisfy the following conditions. Both locations have construction plans for refinery facilities nearby, which is advantageous for the procurement of fuels such as LPG.

- > Available space for construction of a power station close to the port used for fuel transportation
- Close to the main line and demand center
- > Available site for construction of a LNG receiving facility, if necessary

(3) **Influence of fuel cost differences**

LPG or LNG is a candidate fuel for the CCGT plants in Lobito and Namibe, since providing natural gas is impossible. Both of these fuels, however, are more expensive than natural gas. In this section, the increment of fuel cost when using LPG and LNG as the fuel for the CCGT developed after the two CCGT power stations (Soyo and Soyo 2) that already are located in Soyo, is estimated using PDPAT.

The estimated annual cost is shown in Figure 6-37. At the beginning of introduction in 2029, the cost of LPG and LNG is higher than that of natural gas, but not by a big margin. Also, the difference between LPG and LNG is very small. However, the cost differences among the fuel types increase with the increase in the amount of thermal power generation and higher LPG costs. The annual cost using LPG surpasses that using natural gas by as much as 930 million USD in 2040, while that using LNG surpasses it by 310 million USD.

Figure 6-37 Cost increase when using LPG/LNG as fuel for CCGT (Influence when the fuel for CCGT No. 3 or later is changed from NG to LPG/LNG)

(4) **Comparison of candidate locations**

Table 6-17 and Table 6-18 show the cost characteristics of the candidate sites for CCGT, including Soyo, and the development plan for a list of candidate locations narrowed down in consideration of the cost characteristics, respectively.

As a result of the comparison, the fuel cost difference has a greater influence than the transmission line and fuel tank construction cost, and Soyo site where natural gas can be used is advantageous from the cost aspect. This advantage premised on a low natural gas cost, which is an assumption formed based on international cost forecast. However, the cost of equipment such as fuel tanks may be reduced due to sharing with projects other than electric power, etc., so the cost differences does not necessarily mean larger as shown here.

On the other hand, decentralized layout has preferable properties as described in section (1). Especially energy security and risk diversification is an important factor for decision-making. Therefore, taking into account of this point, development of CCGT considering decentralized layout is the recommended option to consider, as shown in Table 6-18.

In addition, Soyo 2 is planned to be constructed by IPP, and it is decided to prepare necessary preparations including development of relevant laws etc. for the start of operation in 2021. To realize early development, however, it would be helpful to set up procedures for IPP development and establish a supporting scheme.

Table 0-17 Cost characteristics of candidate sites for CCOT							
Items	Soyo site	Lobito site	Namibe site				
① Construction cost for	between SoyoTPP and	between LobitoTPP and Nova	between Namibe TPP and				
new transmission line for	Luanda (400 kV)	Biopio SS (400 kV)	Namibe SS (220 kV)				
connecting to a main grid	400 km,392 millionUSD	23 km, 23 million USD	17 km, 7 million USD				
[Annual cost]	[40 million USD/year]	[2.3 million USD/year]	[0.7 million USD/year]				
(difference)	(Base)	(-38 million USD/year)	(-39 million USD/year)				
② Construction cost of fuel							
tank	-	LNG : 150 million USD (+15 million USD/year)					
③ Additional fuel cost							
(in 2040, with assumed	NG: 4.2 UScl/kWh	LPG: 15.1 USc/kWh (+ 930 m	illion USD/year)				
CCGT generation of	(Base)	LNG: 7.6 USc/kWh (+310 million USD/year)					
17,900GWh/y)							
④ Transmission loss							
	(Base)	Low (Slight)	Low (Slight)				
1+2+3	(Base)	LPG: +907 million USD/year LNG: +287 million USD/year	LPG: +906 million USD/year LNG: +286 million USD/year				

Table 6-17	Cost characteristics of candidate sites for CCGT
------------	--

Note: Fuel cost and annual generation: assumed values for 2040. Service life of transmission lines and tanks: 40 years. Interest rate: 10%.

Power station	Deve lop- ment	Items	Soyo site	Lobito/Namibe site
No.1		Evaluation Construction in time	 Soyo Under construction (partially 	× Construction cannot be
750 MW class (375x2)	0 W /2017 ss /2018 Fuel supply Fuel cost		 onder construction (partially completed) o NG available by 2018 oLow (use of NG available) o 400 kV TL completed o First introduction of CCGT 	completed in time \times No fuel supply facility so far Δ Limited to trafficable fossil fuel Δ New construction required \circ First introduction of CCGT
		Evaluation	O Soyo	×
No.2 750 MW class	2021 /2022	Construction in time Fuel supply Fuel cost	 △ Possible (Support to IPP is required) ○ NG available by 2018 ○ Low (use of NG available) 	× Lead time is too short × Short lead time for fuel facilities Δ Limited to trafficable fossil fuel
(375x2)		Transmission cost Risk diversification	 400kV TL completed × Concentrated layout 	△ New construction required ○ Diversification effect expected
		Evaluation	Δ	\circ Lobito, \triangle Namibe
No.3 750 MW	2024	Construction in time Fuel supply	 Possible NG available by 2018 	 Possible Available by construction of fuel facility
class (375x2)	/2029	Fuel cost Transmission cost Risk diversification	 ○ Low (use of NG available) △ TL construction cost higher × Concentrated layout 	△ LPG/LNG cost is higher ○TL construction cost lower ○Diversification effect expected
No.4		Evaluation	Δ	\circ Lobito, \triangle Namibe
750 MW class (375x2)	2031 /2034	Construction in time Fuel supply Fuel cost Transmission cost Risk diversification	 (same as No.3) (same as No.3) (same as No.3) (same as No.3) ∆ (same as No.3) ∆ High concentration 	 ○ (same as No.3) ○ (same as No.3) △ (same as No.3) ○ Use of TL available for No.3 ○ Diversification effect expected
		Evaluation	Δ	○ Lobito, ○ Namibe
No.5 750 MW class (375x2)	2036 /2038	Construction in time Fuel supply Fuel cost Transmission cost Risk diversification	 (same as No.3) (same as No.3) (same as No.3) (same as No.3) ∆ (same as No.3) ∆ Long-distance transmission risk remains 	 ○ (same as No.3) ○ (same as No.3) △ (same as No.3) ○ New construction required ○ Lower long-distance transmission risk Diversification effect expected
		Evaluation	○ Soyo	 ○ Lobito, ○ Namibe
No.6 750 MW class (375x1)	2040	Construction in time Fuel supply Fuel cost Transmission cost Risk diversification		 ○ (same as No.3) ○ (same as No.3) △ (same as No.3) △ Available to use TL for No.3 ○ Lower long-distance transmission risk

Table 6-18	Narrowing down and selection of CCGT location

NG: Natural Gas, TL: Transmission Line

6.6.4 Additional development of renewable energy

The amount of greenhouse gas emissions reduced through the development of the wind/solar power (752 MW in total) currently planned is about 600 kt-CO₂, or about 10% of the total emission (see section 6.5.4).

As mentioned earlier, the accuracy of this calculation is low because conditions of generation are assumed as the generation plans of the projects are at the initial stage. It seems likely however, that the further installation of wind/solar power will be necessary to realize reduced (or avoid increased) greenhouse gas emissions. In this section, therefore, a case of adding wind/solar power generation is examined as a reference.

(1) **Greenhouse gas reduction effect**

The greenhouse gas emission is examined in the case where wind/solar power is developed under the following conditions. We find that when both 300 MW of wind power and 300 MW of solar power are developed and installed every year from 2028, 10 years from now, onward, the expected greenhouse gas emission can be reduced to the same level as the current level in 2018 (see Figure 6-38).

There is a possibility, however, that the reduction effect may be overestimated, as this calculation is based on assumptions of the characteristics of the wind/solar power generation. The capacity of the development, meanwhile, is rather large compared with the potential of renewable energy, which is 20 GW in total (3.9 GW of wind power (of which 0.6 GW is prioritized in economy) and 17.3 GW of solar power), as described in section 3.2.4.

< Assumptions >

Wind power: Solar power: Reserve margin: Generations:	Development at 300 MW/year pace from 2028 to 2040, 3,900 MW in total ditto CCGT/GT development postponed within 11% of securing the reserve margin The expected hourly generation of wind/solar power is assumed based on the average of the current plans.
	7,000
((kton-CO ₂ /y)	6,000 Develop PV300MW, WD300MW/y from 2028
<u></u>	5,000
[ktor	4,000
tion	3,000
emission	2,000 Cullent emission
² C	1,000
	2017 - 0 2018 - 0 2019 - 0 2025 - 2021 - 0 2025 - 2023 - 0 2035 - 0 2035 - 0 2035 - 0 2035 - 0 2036 - 0 2037 - 0 2038 - 0 2039 - 0 200 - 0 200 - 0

Figure 6-38 CO₂ reduction effect of large-scale introduction of wind/solar power

(2) Influence of additional wind/solar power development

In accordance with the additional development of wind/solar power examined in section (1) above, the generation cost increases. As shown in Figure 6-39, the total generation cost in a year increases with the introduction of wind /solar power. Compared with the base case, the amount of increase reaches 900 million USD/year in 2040.

Figure 6-40 shows the generation cost, which are about 1.4 UScents/ kWh higher in 2040 than in the base case.

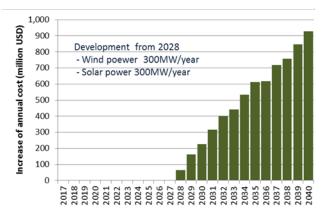
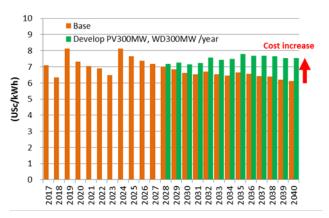
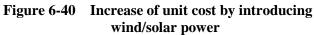




Figure 6-39 Increase of generation cost by introducing wind/solar power

6.7 Recommended project list

The recommended long-term power development plan is summarized in the table below.

Year	Long-term Power Development Plan							
rear	Hydropower	CCGT	GT	Wind power	Solar power			
2017		Soyo1-1 (250)						
2018	Lauca (2070) Lomaun ext.(65)	Soyo1-2 (500)						
2019								
2020	Luachimo ext.(34)							
2021		Soyo2-1 (375)						
2022		Soyo2-2 (375)	Cacuaco No.1 (125)					
2023								
2024	Caculo Cabaça(2172)		Cacuaco No.2 (125)					
2025			Sambizanga No.1 (125)					
2026	Baynes (300)							
2027		Lobito1-1 (375)	Quileva No.1 (125)					
2028	Quilengue (210)		Quileva No.2 (125)	Beniamin (52)	Benguela (10)			
2029		Lobito1-2 (375)		Cacula (88)	Cambongue (10)			
2030			Quileva No.3 (125) Soyo-SS No.1 (125)	Chibia (78)	Caraculo (10)			
2031		Lobito2-1 (375)		Calenga (84)	Catumbera (10)			
2032	Zenzo (950)		Cacuaco No.3 (125) Cacuaco No.4 (125)	Gasto (30)	Lobito (10)			
2033			Sambizanga No.2 (125) Quileva No.4 (125) Quileva No.5 (125) Quileva No.6 (125)	Kiwaba Nzoji I (62)	Lubango (10)			
2034		Lobito2-2 (375)		Kiwaba Nzoji II (42)	Matala (10)			
2035	Genga (900)		Soyo-SS No.2 (125) Cacuaco No.5 (125)	Mussede I (36)	Quipungo (10)			
2036		Namibe1-1 (375)		Mussede II (44) Nharea (36)	Techamutete (10)			
2037			Cacuaco No.6 (125) Sambizanga No.3 (125) Soyo-SS No.3 (125)	Tombwa (100)	Namacunde (10)			
2038	Túmulo Caçador(453)	Namibe1-2 (375)						
2039								
2040	Jamba Ya Oma (79) Jamba Ya Mina (205)	Lobito3-1 (375)						
Total	7,438 MW	4,125 MW	2,250 MW	652 MW	100 MW			

 Table 6-19
 Long-term power development plan

Chapter 7 Study on optimization of the transmission system development plan

7.1 Current power system in Angola

Figure 7-1 shows the transmission system map of Angola as of July 2017. The transmission network has a maximum voltage of 400 kV and is composed of transmission voltages of 220 kV, 150 kV, 132 kV, 110 kV, and 60 kV. The maximum demand is slightly less than 2,000 MW. In RNT, where the voltage classes are being organized, there are expected to be three levels of building in the future: 400 kV, 220 kV, and 60 kV.

The transmission network of Angola country is currently divided into three parts: the northern part, central part, and southern part. In the northern power system, large hydroelectric power plants such as Capanda and Cambambe supply power to provinces such as Bengo, Malanje, Cuanza Norte, Cuanza Sul, Uige, and Zaire, as well as the capital city of Luanda (which has the highest demand). The northern part covers 80% of the power supply of all of Angola and accounts for nearly 80% of the total demand.

In 2018, Alto Chingo SS in the northern part, the Novo Biopio SS - Quileva SS - Lomaum hydro power station network, and Benguela sul SS in central Benguela province are expected to be interconnected to 220 kV transmission lines. The west coast side of the northern part and central part are linked as one network. The network, however, is unavailable due to aging of the Cambambe HPS - Gabela SS transmission line transmitting hydroelectric power from the north to the Alto Chingo SS. For the reasons above, the power systems are not interconnected. A new 220 kV transmission line under construction at Cambambe HPS - Gabela SS began operating in 2017. When the line was completed, the northern-central system was connected and united.

Huanbo and Bie provinces in the central part have the Gove hydroelectric power plant - Dango SS - Kuito SS transmission line, a network connected with a single circuit 220 kV transmission line. The demand rate of the central region is forecasted to compose about 10% of the total demand rate for all of Angola, provided that the demand in Benguela province is included in the calculation.

Double circuit 400 kV transmission lines have already been completed from N'Zeto SS to Soyo Thermal Power Station currently under construction in the northern end of the country. Kapary SS has been completed, and a single circuit 400 kV transmission line from Kapary SS to Catete SS has been completed. Preparations for electric power transmission from the Soyo TPS to the capital city Luanda, the largest demand site, are progressing. In addition, the 400 kV transmission line constitutes a single circuit transmission line loop system that returns from Catete SS to Catete SS via Viana SS - Lucala SS - Canpanda Elevadora HPS - Lauca HPS - Cambutas HPS. As a result, a 400 kV transmission system interconnecting large hydraulic and thermal power plants and high-demand areas has already been established.

The Namibe SS, Lubango SS, and Matala SS in Namibe and Huila provinces of the southern lineage are interconnected with Namibe SS - Lubango SS 150 kV transmission line and Lubango SS - Matala SS 60 kV transmission line. Overall, the demand in the south accounts for less than 10% of total demand in Angola. As described above, the power system of Angola is currently divided into three main electric power systems, all of which will be interconnected in the future.

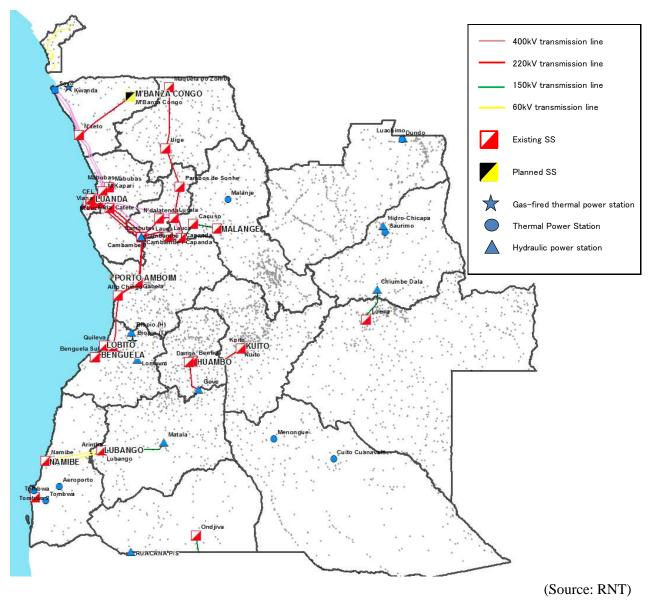
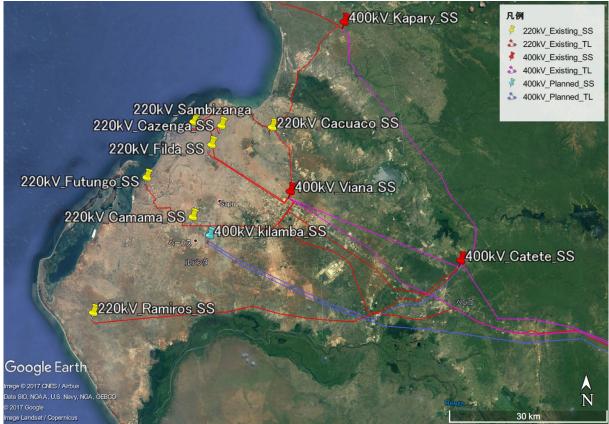



Figure 7-1 Transmission system map of Angola (July 2017)

7.2 Transmission system of the capital city Luanda

FIGURE 7-2 shows the current transmission system in the center of the capital city Luanda. Six 220 kV substations (Camama, Cacuaco, Sambizang, Cazenga, Filda and Futungo) operate under two 400 kV substations (Kapary, Viana) interconnected with the 400 kV Catete substation. The substations provide electric power to the center of the city from sites located around it.

The 400 kV Kapary substation has been supplied mainly from Soyo thermal power plant since it began full-scale operation as a power source. The 400 kV Viana substation is mainly supplied from the Cambambe hydro power station and partly supplied from the Lucala hydro power station.

(Sourse: RNT, JICA Survey Team)

Figure 7-2 Transmission system map of the center of the capital city Luanda

7.3 Power system enhancement plan by RNT

Figure 7-3 and Figure 7-4 the power network system in 2025 and 2027, respectively.

According to RNT, a plan slightly different from that shown in FIGURE 7-1 is in place. Specifically, 400 kV transmission lines will be extended from Lauca to WakoKungo SS -Dango SS - Lubango SS -Biopio SS as well as Cabaca SS - Biopio SS in 2022, while the 400 kV transmission lines will be extended from Canpanda Elevadora HPS to east side and be connected to XaMuteba SS - Saurimo SS.

As a result, the four power systems of Angola (north system, central system, south system, and east system) will be interconnected by 400 kV transmission lines. In addition, 200 kV transmission lines will connect Saurimo in LuandaSul province to Luena in Moxio province. RNT assumes that maximum demand will be about 4200 MW.

Four hundred kV transmission lines will interconnect Biopio SS - Dango SS, and Biopio SS - Lubango SS to constitute a 400 kV loop system in 2025. Moreover, an enhancement of the 220 kV transmission line system is being developed to connect Menogue SS in CuandoCubango province, and a 400 kV- 200 kV

loop system will be completed by interconnecting WakoKungo SS - Dango - SS Lubango SS - NovaBiopio SS.

The plan mentioned above will enhance the central system and the south system. At this point in the plan, 17 of the 18 provinces of Angola (the exception being Cabinda province, the enclave) will be interconnected by power systems. In addition, the 400 kV transmission lines will be extended from Lubango SS to Baynes HPS and connected with neighboring Namibia by international tie lines. RNT assumes that maximum demand will be about 4200 MW.

Under plans for 2027, Ondjive SS in Cunene province and Menongue SS in CubangoCubango province are to be connected by 220 kV transmission lines and the southern system is to be a 400 kV- 200 kV loop system. RNT assumes that maximum demand will be about 7100 MW.

Additionally, Luena SS in Moxico province and Camacupa SS in Bie province are to be connected by 220 kV transmission lines in the future, and the north, central system, and east systems will form a loop system to improve the reliability of the east system.

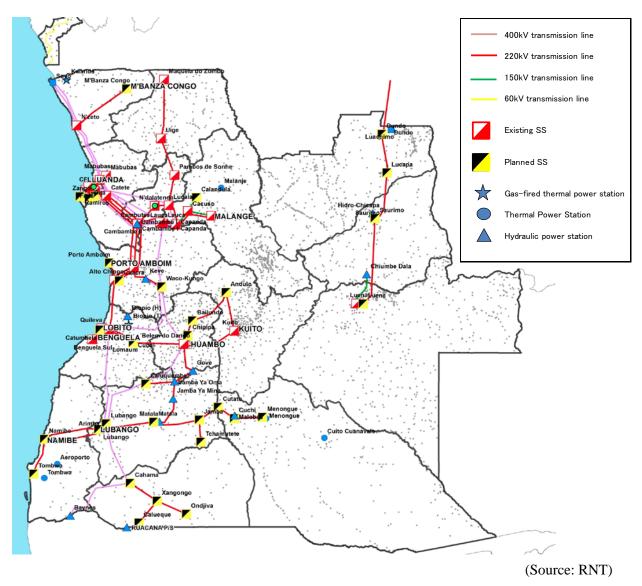


Figure 7-3 Transmission system map of Angola (2025)

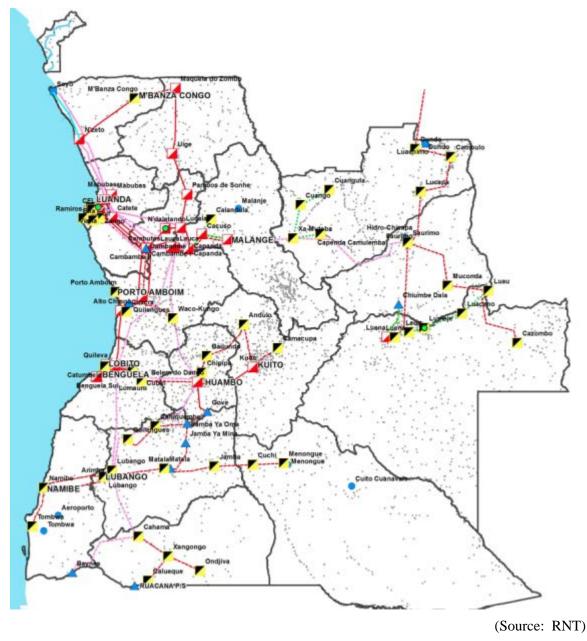


Figure 7-4 Transmission system map of Angola (2027)

7.4 Characteristics of the main power system in Angola

The RNT plan for 2027 describes a bulk power system mainly constituting a single circuit transmission line, with 400 kV double circuit transmission lines linking Soyo SS - N'zeto SS - Kapary SS - Catete SS. Hence, the bulk power system will constitute a 400 kV - 200 kV loop system.

As a result, the power flow will become very complicated and troublesome to evaluate if the N-1 criteria are met.

7.4.1 Voltage reference

Voltage reference is defined as follows in the planning criteria of RNT power system:

Voltage class (kV)	Normal operating condition "n"				Single contingency condition "n-1"			
	Minimum Maxin		mum	Minimum		Maximum		
	kV	p.u.	kV	p.u.	kV	p.u.	kV	p.u.
400	380	0.95	420	1.05	360	0.9	420	1.05
220	209	0.95	231	1.05	198	0.9	242	1.1
150	142	0.95	157	1.05	135	0.9	165	1.1
110	104.5	0.95	115.5	1.05	99	0.9	121	1.1

Table 7-1Voltage criteria

(Source: RNT)

7.5 Information gathering and analysis of the existing transmission facilities in Angola

7.5.1 Outline

The JICA Survey Team confirmed the existing transmission lines when moving within Luanda city or surveying the local area (such as Benguela, Huambo, and Soyo). The team also conducted hearings with transmission engineers from RNT and then gathered information about the transmission lines in Angola. In parallel, the team confirmed the status of the substation equipment in Angola by meeting with RNT and visiting substations in field surveys.

7.5.2 The existing transmission lines

The supporting structures for the 66 kV transmission lines consisted of concrete poles (see Figure 7-5), steel angle towers (see Figure 7-6 and Figure 7-7), and steel pipe towers (see Figure 7-8). The 220 kV transmission lines were mainly supported by steel angle towers, though many steel pipe towers were also built along the roads. There were both single and double circuits, and in one case we observed a single circuit tower and double circuit tower (one circuit is empty) mixed in one circuit transmission line.

According to RNT, trees in contact with electric wires cause many accidents. At the same time, extensive tree trimming under the wires is prohibitively expensive. It seems that ground clearance from the electric wires and the height of the transmission line tower were designed to be lower. For the transmission lines along the roads, however, the ground clearance was sufficient.

The insulators used were mainly glass. In some cases, polymer insulators were used for transmission lines below 220 kV.

The conductors used were mainly copper for 60 kV transmission lines, and ACSR and AAAC for 220 kV or 400 kV transmission lines (the latter mainly for the large-capacity transmission lines).

As for the ground wires, OPGW (optical fiber composite overhead ground wire) and AW (aluminum-clad steel overhead ground wire) were used.

Figure 7-5 66 kV concrete pole

Figure 7-7 60 kV underground cable branch tower

Figure 7-6 66 kV one circuit angle tower

Figure 7-8 60 kV steel pipe tower

Figure 7-9 220 kV steel pipe tower (tension)

Figure 7-11 220 kV Transmission line along the road

Figure 7-10 220 kV steel pipe tower (suspension)

Figure 7-12 220 kV steel angle tower

Figure 7-13 400 kV one circuit transmission lines (distant view)

Table 7-2 and Table 7-3 list the 400 kV and 220 kV transmission lines of Angola, respectively. As shown in the outline of the Angola power system of August 2016, the country's 400 kV transmission lines ran a total distance of 281 km on 2 lines and the country's 24 kV transmission lines ran a distance of 1964.1 km on 24 lines. As of October 2017, less than a year later, the 400 kV transmission lines spanned 1183 km on 11 lines and the 220 kV transmission lines spanned 2597.4 km on 36 lines. The quantity of transmission line facilities is rapidly increasing.

A	Name of Transmission line	Charles a sind	End point	Valtara [LV]	Circuit	Length [Km]	Turne of Conductor
Area	Name of Transmission line	Start point	End point	Voltage[kV]	GIrcuit	Lengui [Kiii]	Type of Conductor
	Capanda_elv - Lucala	Capanda_elve	Lucala	400	1	61	3 x ACSR Crow 409 mm ²
	Lucala - Viana	Lucala	Viana	400	1	220	3 x ACSR Crow 409 mm ²
	Cambutas - Catete	Cambutas	Catete	400	1	123	2 x AAAC Sorbus 659,4 mm ²
	Soyo TPS – Soyo	Soyo TPS	Soyo	400	2	40	3 x AAAC Sorbus 659,4 mm ²
	Soyo - N'Zeto	Soyo	N'Zeto	400	2	142	3 x AAAC Sorbus 659,4 mm ²
North	N'Zeto - Kapary	N'Zeto	Kapary	400	2	194	3 x AAAC Sorbus 659,4 mm ²
	Kapary - Catete	Kapary	Katete	400	2	57	3 x AAAC Sorbus 659,4 mm ²
	Catete - Viana	Catete	Viana	400	1	39	2 x AAAC Sorbus 659,4 mm ²
	Lauca - Capanda_elve	Lauca	Capanda_elve	400	1	41	2 x AAAC Sorbus 659,4 mm ²
	Lauca - Cambutas	Lauca	Cambutas	400	1	76	3 x AAAC Sorbus 659,4 mm ²
	Lauca - Catete	Lauca	Catete	400	1	190	2 x AAAC Sorbus 659,4 mm ²
	Total Length of 400kV Transmission lines [Km] 1183						

 Table 7-2
 List of 400 kV transmission lines (as of October 2017)

(Source: RNT, JICA Survey Team)

Table 7-3	List of 220 kV	transmission lines	(as of October 2017)	
-----------	----------------	--------------------	----------------------	--

Area	Name of Transmission line	Start point	End point	Voltage [kV]	Circuit	Length [Km]	Type of Conductor
	Cambambe - Catete	Cambambe	Catete	220	1	116	ACSR Crow 54/7 409 mm ²
	Catete – Camama	Catete	Camama	220	1	64	ACSR Crow 54/7 409 mm ²
	Cambambe - Catete	Cambambe	Catete	220	1	116	ACSR Crow 54/7 409 mm ²
	Catete – Viana	Catete	Viana	220	1	42	ACSR Crow 54/7 409 mm ²
	Cambambe - Viana	Cambambe	Viana	220	1	158	AAAC Yew 479 mm ²
	Cambambe - Cmbutas	Cambambe	Cambutas	220	2	1.3	ACSR Crow 54/7 409 mm ²
	N'Dalatando - Cambutas	N'Dalatando	Cambutas	220	1	73	ACSR Crow 54/7 409 mm ²
	Cambambe – Gabela	Cambambe	Gabela	220	1	130	ACSR Crow 54/7 409 mm ²
	Gabela - Alto chingo	Gabela	Alto Chingo	220	1	81	2xAAAC Yew 479 mm ²
	Viana – Camama	Viana	Camama	220	1	34.5	ACSR Crow 54/7 409 mm ²
	Viana - Cazenga I	Viana	Cazenga	220	1	21.5	ACSR Crow 54/7 409 mm ²
	Viana - Cazenga II	Viana	Cazenga	220	1	18	ACSR Crow 54/7 409 mm ²
	Viana - Cazenga III	Viana	Cazenga	220	1	18	AAAC Yew 470 mm ²
	Viana - Cacuaco	Viana	Cacuaco	220	1	14.5	ACSR Crow 54/7 409 mm ²
North	Cacuaco - Sambizanga	Cacuaco	Sambizanga	220	2	19.3	AAAC Yew 479 mm ²
	Viana – Filda I	Viana	Filda	220	1	18	AAAC Yew 479 mm ²
	Viana – Filda II	Viana	Filda	220	1	18	AAAC Yew 479 mm ²
	Capanda - Cambutas	Capanda	Cambutas	220	1	120	ACSR Crow 54/7 409 mm ²
	Capanda - Lucala	Capanda	Lucala	220	1	70.7	ACSR Crow 54/7 409 mm ²
	Capanda - Capanda Elev A	Capanda	Capanda Elev.	220	1	3.6	ACSR Crow 54/7 409 mm ²
	Capanda - Capanda Elev B	Capanda	Capanda Elev.	220	1	3.6	ACSR Crow 54/7 409 mm ²
	Lucala - N'Dalatando	Lucala	N'Dalatando	220	1	35.7	ACSR Crow 54/7 409 mm ²
	Lucala - Pambos de Sonhe - Uíge	Lucala	Pambos de Sonhe - Uíge	220	1	211	ACSR Crow 54/7 409 mm ²
	Uíge - Maquela do Zombo	Uíge	Maquela do Zombo	220	1	200	ACSR Crow 54/7 409 mm ²
	Kapary – Cacuaco	Kapary	Cacuaco	220	1	26.7	AAAC Yew 479 mm ²
	Kapary - Ada	Kapary	Ada	220	1	14	AAAC Yew 479 mm²
	Camama - Futungo de Belas	Camama	Futungo de Belas	220	2	14.5	AAAC Yew 479 mm²
	Catete-Ramiros	Catete	Ramiros	220	2	91	AAAC Yew 479 mm ²
	N'Zeto – M'Banza Congo	N'Zeto	M'Banza Congo	220	1	181	AAAC Yew 479 mm ²
	Alto Chingo – Novo Biopio	Alto Chingo	Novo Biopio	220	1	156	2xAAAC Yew 479 mm ²
	Lomaum HPS - Novo Biopio	Lomaum HPS	Novo Biopio	220	2	95.8	ACSR Crow 54/7 409 mm ²
	Novo Biopio - Quileva	Novo Biopio	Quileva	220	1	18	2xAAAC Yew 479 mm ²
	Novo Biopio - Benguela Sul	Novo Biopio	Benguela Sul	220	1	57	AAAC Yew 479 mm ²
	Gove HPS - Belém do Dango	Gove HPS	Belém do Dango	220	1	93	ACSR Crow 54/7 409 mm ²
	Belém do Dango - Kuíto	Belém do Dango	Kuíto	220	1	150	ACSR Crow 54/7 409 mm ²
	Lomaum HPS - Quileva	Lomaum HPS	Quileva	220	1	114	ACSR Crow 54/7 409 mm ²
	Total L	ength of 220kV Tran	smission lines [Km]			2598.7	

(Source: RNT, JICA Survey Team)

7.5.3 The existing substations

Transformers made in China were mainly used for the new substations in the capacity range from 60 kV to 400 kV (see Figure 7-14), though some made in Germany were also seen. At the newly constructed 400 kV Soyo substation, four single-phase transformers were set as one unit. One was left on reserve as a spare for later use for any phase. A variable compensation reactor (manufactured by Siemens AG, see Figure 7-15) was also installed for phase modification.

The circuit breakers used were insulator types for 66 kV substations and vertical type polymer-insulated gas circuit breakers made in China (see Figure 7-16) for 220 kV substations. There was no big difference, however, from the usual outdoor substation. Specifically, a gas-insulated switchgear (GIS, manufactured by ABB; see Figure 7-17) was used at the 400 kV switchgear of the Soyo thermal power plant.

In addition, the bus configuration was standardized as a double bus configuration (see Figure 7-18), a highly reliable type.

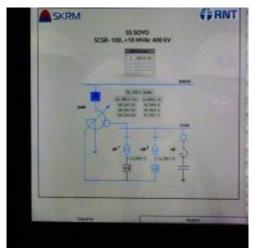


Figure 7-14 66 kV/15 kV transformer made in China

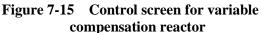
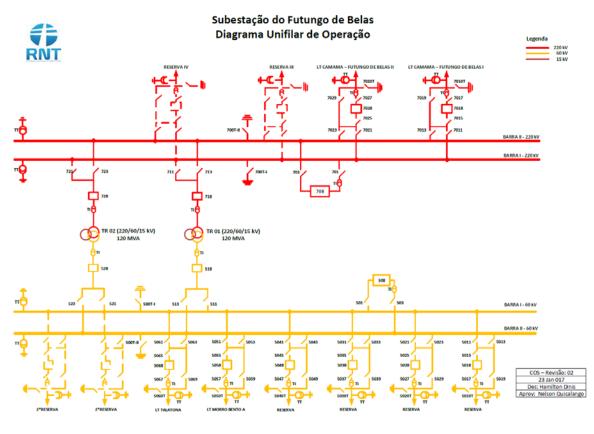



Figure 7-16 220 kV vertical type gas-insulated circuit breaker

Figure 7-17 Indoor type gas-insulated switchgear

(Source: RNT)

Figure 7-18 Example of a multiple bus configuration (220 kV Futungo substation)

Table 7-4 and Table 7-5 list Angola's 400 kV and 220 kV substations, respectively. As shown in the Angola Electric Power System Outline of August 2016, one 400 kV substation with a total generation capacity of 420 MVA in one facility and fifteen 220 kV substations with a total capacity of 2129 MVA were in operation. As of October 2017, nine 400 kV substations with 4950 MVA capacity and twenty-three 220 kV substations with 4086 MVA capacity were in operation. The quantity of substation facilities is also rapidly increasing.

Area	Province	Substation Name	Voltatge[kV]	Tramsformer	Capacity[MVA]		
	l en de	Viana substation	400/220	210 x 2	420		
	Luanda	Catete substation	400/220	450 x 2	900		
	Bengo	Kapary substation	400/220	450 x 2	900		
North	Zaire	Soyo substation	400/60	120 x 2	240		
	Zaire	N'Zeto substation	400/220	90 x 1	90		
	Kwanza Norte	Cambutas substation	220/400	930 x 2	1860		
	Kwariza Norte	Capanda_elev substation	220/400	270 x 2	540		
	Total Capacity of 400kV substation facilities[MVA] 4950						

Table 7-4	List of 400 kV	substations	(as of October 2017)
		substations	

(Source: RNT, JICA Survey Team)

Area	Province	Substation Name	Voltage[kV]	Transformer	Capacity[MVA]
	Luanda	Catete substation	220/60	120 x 2	240
		Cazenga substation	220/60/15	60 x 5	300
		Viana substation	220/60	60 x 5	300
		Filda substation	220/60	120 x 2	240
		Camama substation	220/60	120 x 3	360
		Cacuaco substation	220/60	60 x 2	120
		Sambizanga substation	220/60	120 x 2	240
		Futungo de Belas substation	220/60	120 x 2	240
		Ramiros substation	220/60	120 x 2	240
	Bengo	kapary substation	220/60	120 x 2	240
North		Ada substation	220/15	25,40	65
Norui	Kwanza Norte	N' Dalatando substation	220/30	40 x 1	40
		Pambos de Sonhe substation	220/30	30 x 1	30
		Cambutas substation	220/60	120 x 2	240
	Malanje	Capanda Elevadora substation	220/400	270 x 2	590
			220/30	30 x 1	
			220/110	20 x 1	
	Uíge	Uíge substation	220/60	40 x 1	40
	-	Maquela do Zombo substation	220/30/15	10 x 1	40
			220/60/15	30 x 1	
	Zaire	N'Zeto substation	220/60	63 x 1	63
	L	M'Banza Congo substation	220/60	<u>63 x 1</u>	63
	Benguela	Quileva substation	220/64/32	100 x 2	200
	Kwanza Sul	Alto Chingo substation	220/60	60 x 1	60
Central		Gabela substation	220/60/30	35 x 1	35
	Huambo	Belém do Dango substation	220/60/30	60 x 1	60
		Kuito substation	220/60/10	20 x 1	40
	Total Ca	apacity of 220kV substation fac	ilities[MVA]		4086

Table 7-5List of 220 kV substations (as of October 2017)

7.6 Information gathering and analysis of the latest transmission development plan

7.6.1 Existing development strategies and plans

Based on Angola Energia 2025, the plan through 2027 is currently under consideration at RNT.

The skeletal system from the northernmost Soyo thermal power plant to Luanda and the transmission line from the hydraulic power plant in the Kuwanza River basin to Luanda are already being completed. A 400 kV core line to transmit this electricity to the central and southern regions is planned for the future. Under the plans by SAPP, this line will eventually be connected to the international linkage line with Namibia, the neighboring country to south of Angola. For this purpose, electricity sales to the African electricity market and interchange during the drought period are considered. Moreover, the 400 kV transmission line also plays a role as a power supply line for a newly developed large-scale power plant.

The current plans for the 400 kV main transmission lines and substations are shown in Table 7-7 and Table 7-6.

The 220 kV lines now connect the northern system and central system, but they will take on a growing role as a regional supply lines from the main 400 kV substation in each province. They also serves as a power line for small-scale thermal power plants.

Similarly, the existing plans for the 220 kV transmission lines and substations are shown in Table 7-9 and Table 7-8.

	rable	/-U E.	AISUIIG 400 K V	main power	u ansi	111221011	plans D	Y KINI (~ 2027)	
					number	Line	Year		
Project#	Area	Voltage	Starting point	End point	of	Length	of	Project Status	Donar
		(kV)			circuit	(km)	operation		
1	Central	400	Lauca	Waco kungo	1	177	2020	Under Construction(Cmec)	China
2	11	400	Waco kungo	Belem do Huambo	1	174	2020	11	China
3	Northern	400	Catete	Bita	1	54	2022	Project in progress(Odebrecht)	Brazil
4	11	400	Cambutas	Bita	1	167	2022	11	Brazil
5	Central	400	Belem do Huambo	Lubango	1	337	2022	Plannning(or No information)	1
6]]	400	Belem do Huambo	Capelongo	1	202	2022	11	1
7	Northern	400	Cambutas	Caculo Cabaca	1	49	2023	11	
8]]	400	Caculo Cabaca	Bita	1	214	2023	11	1
9	Central	400	Caculo Cabaca	Nova Biopio	1	348	2025	11	1
10	11	400	Nova Biopio	Lubango	1	317	2025	11	
11	Southern	400	Lubango	Cahama	1	179	2025	11	
12]]	400	Cahama	Baynes	1	312	2025	11	_
13	Eastern	400	Capanda_elev	Xa-Muteba	2	266	2025	11	-
14]]	400	Xa-Muteba	Surimo	2	335	2025	11	
15	Southern	400	Capelongo	Ondjiva	1	312	2027	11	_
16	11	400	Cahama	Ondjiva	1	175	2027	11	-
17	"	400	Nova Biopio - Lubango	Caluquembe	2	5	2027	11	
18	11	400	Belem do Huambo - Lubango	Quilengues	2	5	2027	11	_
19	11	400	Cahama	Ruacana	2	125	2027	11	_
					Total	3753			

Table 7-6Existing 400 kV main power transmission plans by RNT (~ 2027)

	Table 7-7	Existing 400 kV main substation plans by RNT (~ 2027)
--	-----------	--	---

Project#	Area	Voltage (kV)	Substation Name	Capacity (MVA)	Year of operation	Project Status	Donar
1	Cuanza Sul	400	Waco kungo	450	2020	Under Construction(Cmec)	China
2	Huambo	400	Belem do Huambo	900	2020	11	China
3	Luanda	400	Bita	900	2020	Project in progress(Odebrecht)	Brazil
4	Huila	400	Lubango	900	2022	Plannning(or No information)	—
5	11	400	Capelongo	900	2022	11	—
6	Benguera	400	Nova Biopio	900	2025	11	—
7	Southern	400	Cahama	420	2025	11	—
8	Eastern	400	Saurimo	900	2025	11	—
9	Luanda Norte	400	Xa-Muteba	240	2025	11	—
10	Cunene	400	Ondjiva	420	2027	11	—
11	Huila	400	Caluquembe	180	2022	11	—
12	11	400	Quilengues	180	2027	11	—
	Total						

(Source: RNT, JICA Survey Team)

	uble i			ium poner e			ne plans		
					number		Year		
Project#	Area	Voltage	Starting point	End point	of	Line Lengtl		Project Status	Donar
		(kV)			circuit	(km)	operation		
1	Northern	220	Kapary	Caxito	1	18	2022	Plannning(or No information)	_
2	"	220	Filda	Golf	2	7	2022	"	-
3	11	220	Bita	Camama	1	17	2022	11	-
4	"	220	Bita	Rammiros	1	23	2022	"	_
5	"	220	Capanda	Marange	1	101	2022	11	_
6	Central	220	Cambambe	Gabela	1	134	2022	11	_
7	"	220	Gabela	Alto Chingo	1	64	2022	11	—
8	11	220	Gabela	Quibala	1	64	2022	11	_
9	"	220	Quibala	Waco Kungo	1	68	2022	11	_
10	11	220	Lomaum	Cubal	1	4	2022	11	_
11	"	220	Belem do Huambo	Cubal	1	146	2022	11	_
12	Southern	220	Lubango	Namibe	2	151	2022	11	—
13	"	220	Namibe	Tombwa	1	110	2022	11	_
14	"	220	Lubango	Matala	1	154	2022	11	—
15	11	220	Matala HPS	Matala	1	15	2022	11	—
16	11	220	Capelongo	Cuchi	2	71	2022	11	—
17	11	220	Cuchi	Menongue	2	77	2022	11	—
18	Northern	220	Viana	PIV	1	4	2027	11	—
19	"	220	Cazenga	PIV	1	21	2027		_
20	"	220	Sambizanga	Chicala	1	5	2027	11	—
21	11	220	Futungo de Belas	Chicala	1	12	2027	11	—
22	11	220	Catete	Maria Teresa	2	50	2027	11	—
23	Central	220	Alto Chingo	Cuacra	2	15	2027	11	—
24	"	220	Alto Chingo	Port Amboim	2	50	2027	11	-
25	"	220	Quileva	Catumbela	1	8	2027	11	—
26	"	220	Benguela Sul	Catumbela	1	33	2027	11	_
27	11	220	Nova Biopio	Bocoio	1	5	2027	11	_
28	"	220	Lomaum	Bocoio	1	5	2027	11	—
29	11	220	Cubal	Ukuma	1	5	2027	11	—
30	11	220	Belem do Huambo	Ukuma	1	5	2027	11	—
31	"	220	Belem do Huambo	Catchiungo	1	9	2027	11	—
32	11	220	Kuito	Catchiungo	1	9	2027	11	—
33	11	220	Belem do Huambo	Kuito	1	144	2027	11	—
34	11	220	Kuito	Andulo	1	110	2027	11	—
35	Southern	220	Cahama	Xangongo	1	88	2027	11	—
36	11	220	Ondjiva	Xangongo	1	90	2027		-
37	11	220	Capelongo	Matala	1	158	2027		—
38	"	220	Matala	Jamba Mina	2	83	2027	11	
39	11	220	Jamba mina	Jamba Oma	2	49	2027	11	_
40	11	220	Capelongo	Tchamutete	2	93	2027	11	—
41	Eastern	220	Saurimo	Lucapa	1	157	2022	11	
42	11	220	Lucapa	Dundo	1	135	2022	11	
43	11	220	Saurimo	Luena	1	246	2027	11	—
44	11	220	Saurimo	Muconda	1	169	2027	11	_
45	11	220	Muconda	Luau	1	100	2027	11	—
46	11	220	Luau	Cazombo	1	187	2027	11	—
					Total	3269			

Table 7-8Existing 220 kV main power transmission line plans by RNT (~ 2027)

	Tuble 7 9	L'Ansting	220 KV mam Su		plans of		
					Year		
Project#	Area	Voltage	Substation	Capacity	of	Project Status	Donar
		(kV)	Name	(MVA)	operation		
1	Bengo	220	Caxito	120	2022	Plannning(or No information)	
2	Luanda	220	Golf	240	2022	11	-
3	11	220	Bita	240	2022	11	
4	Maranje	220	Maranje	200	2022]]	_
5	Cuanza Sul	220	Gabela	120	2022]]	_
6	11	220	Quibala	60	2022]]	_
7	11	220	Waco Kungo	60	2022	11	-
8	Benguela	220	Cubal	120	2022]]	_
9	Huambo	220	Belem do Huambo	240	2022]]	_
10	Huila	220	Lubango	240	2022]]	_
11	Namibe	220	Namibe	120	2022]]	_
12	11	220	Tombwa	120	2022	11	-
13	Huila	220	Matala	120	2022	11	_
14	Cuando Cubango	220	Cuchi	40	2022]]	_
15	11	220	Menongue	240	2022	11	_
16	Luanda	220	PIV	240	2027	11	_
17	11	220	Chicala	240	2027	11	-
18	Bengo	220	Maria Teresa	120	2027	11	_
19	Cuanza Sul	220	Cuacra	60	2027]]	_
20	11	220	Port Amboim	120	2027]]	-
21	Benguela	220	Catumbela	240	2027	11	-
22]]	220	Bocoio	120	2027]]	_
23	Huambo	220	Ukuma	120	2027]]	_
24	11	220	Catchiungo	120	2027]]	_
25	Bie	220	Andulo	120	2027]]	_
26	Cunene	220	Xangongo	120	2027	11	_
27	11	220	Tchamutete	180	2027	11	_
28	Moxito	220	Luena	240	2027	11	—
29	Luanda Sul	220	Muconda	40	2027]]	_
30	Moxito	220	Luau	120	2027	11	_
31]]	220	Cazombo	80	2027	11	_
			Total	4560			

Table 7-9Existing 220 kV main substation plans by RNT (~ 2027)

For reference, the transmission system diagrams as of 2022 and 2027 obtained from RNT are shown in Figure 7-19 to Figure 7-22.

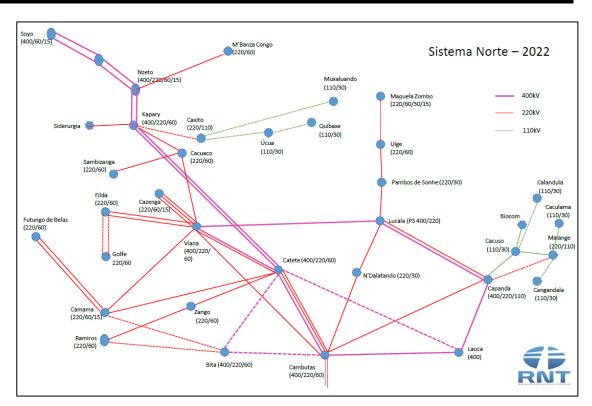


Figure 7-19 Existing plan for the northern system as of 2022 by RNT

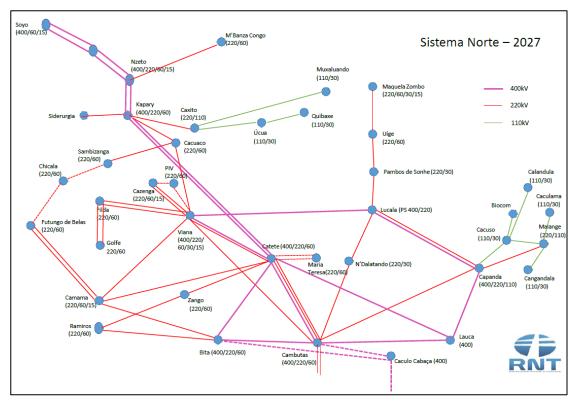


Figure 7-20 Existing plan for the northern system as of 2027 by RNT

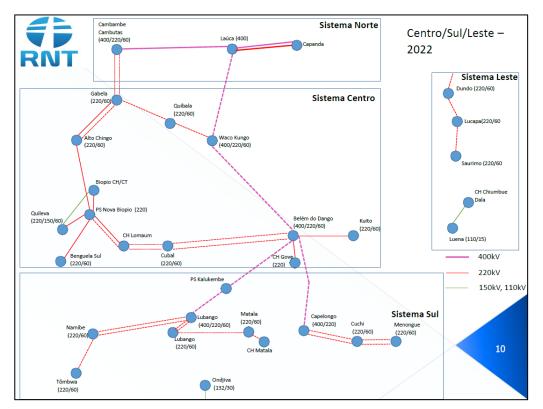


Figure 7-21 Existing plan for the central, southern and western systems as of 2022 by RNT

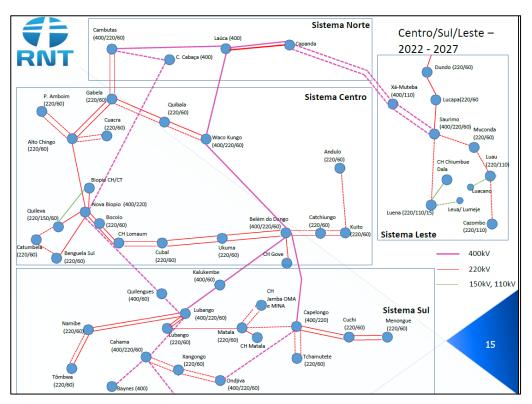


Figure 7-22 Existing plan for the central, southern and western systems as of 2027 by RNT

7.6.2 Analysis of the technical data and the latest cost in existing facilities

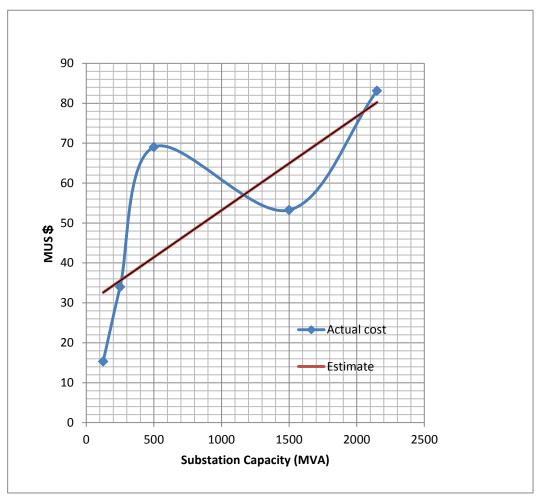
In order to confirm the design content of the existing facilities, we asked for technical information on the transmission lines and substations by questionnaire, during interviews, etc. We were only able, however, to obtain fragmentary technical standards and technical specifications on individual projects. The information confirmed that the transmission line and substation designs were basically based on IEC standards.

We examined details related to the transmission lines and substations from two packages of materials obtained from RNT: "ESPECIFICAÇÕES TECHNICAS GERAIS Redes de Distribution Technical specifications for AT, MT e BT (high voltage (60 kV - 35 kV), medium voltage (35 kV - 1 kV), low voltage (less than 1 kV) distribution equipment ET - E - 001 to 008, 2014.10)" and "ESPECIFICA ES TECHNICAS GERAIS Rede de Transporte MAT (General technical specifications for special high-voltage (60 kV or higher) transmission system, ET-E-101 to 121, 2014.7)."

By examining the contents of "Projectos de Linhas aéreas de MAT" (project of special high-voltage overhead transmission line: ET-E-110) and "Projects de Substitution de E de Postos de Seccionamento de MAT" (project of special high-voltage substation or switch station: ET-E-119), we confirmed the design methods and parameters used in the world standard 400 kV or 220 kV transmission lines and substations, based on IEC standards, etc.

Regarding the cost of the transmission lines and substations in Angola, only one example of 220 kV transmission line and substation construction work was available locally. For the cost estimation, we therefore considered the recent international procurement prices in developing countries that have installed transmission lines and substations based on IEC standards.

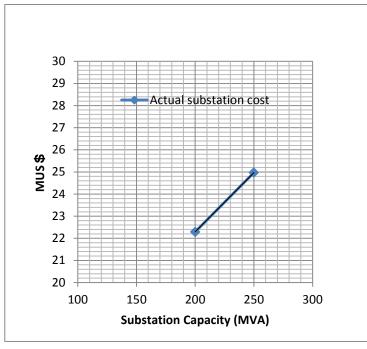
To estimate the cost per km of the 400 kV transmission line, we adopted a cost estimate used in a Bangladesh country project based on the recent international procurement price. To estimate the cost per km of the 220 kV transmission line we referred to the result in the Angola project.


As this cost estimate was for a two circuit transmission line, the cost per km of a one-circuit transmission line was estimated to be 80% of that for a two-circuit line, from the past record. The estimated cost per km for the transmission lines is shown in Table 7-10

Voltage	Number of cct	TL cost per km (Unit:MUSD/km)
4001.)/	1	0.78
400kV	2	0.98
	1	0.36
220kV	2	0.45

Table 7-10Estimated transmission line cost per km

(Source: JICA Survey Team)


As for the cost of the substations, five cost estimates for 400 kV substation constructions were available from recent cases (3 in Mozambique and 2 in Bangladesh). The cost of substations is known to correlate with the transformer capacity. By knowing this correlation, we were able to linearize the cost of the 400 kV substations by the least squares method and make estimations from the data.

(Source: JICA Survey Team)

Figure 7-23 Estimated 400 kV substation cost

Likewise, the two recent cost estimastes for 220 kV substations elsewhere (Angola 1 case, Mozambique 1 case) allowed us to linearize the value by the least squares method and make an estimate.

(Source: JICA Survey Team)

Figure 7-24 Estimated 220 kV substation cost

According to the above results, the cost per substation based on the transformer total capacity is as shown in Table 7-11.

Table 7-11	Cost per substation based on the total transformer capacity
-------------------	---

Voltage	Cost per substation based on total transformer capacity P (Unit:MUSD/substation)
400kV	0.024xP(MVA) +29.67
220kV	0.054xP(MVA) +11.58

⁽Source: JICA Survey Team)

7.6.3 Analysis based on international interconnection with neighboring countries (Democratic Republic of Congo, Namibia, Zambia)

We studied the international interconnection plan with neighboring countries (Democratic Republic of Congo, Namibia, and Zambia) described in Angola Energia 2025.

The international interconnections described in Angola Energia 2025 cover the following four areas.

- I. Democratic Republic of Congo Inga Hydroelectric Power Station and Soyo Substation
- II. International ties with Western strains from the Kananga substation in the Democratic Republic of Congo
- III. International interconnection with western strains from the Copper Belt substation in Zambia
- IV. Interconnection with an SAPP interconnection transmission line via the Ruakana substation in Namibia

Figure 7-25 outlines the interconnections.

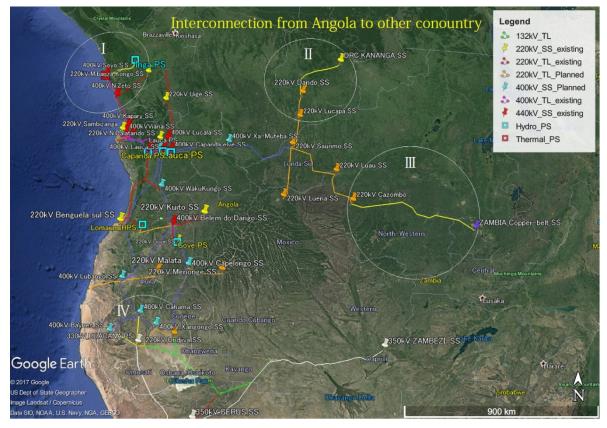
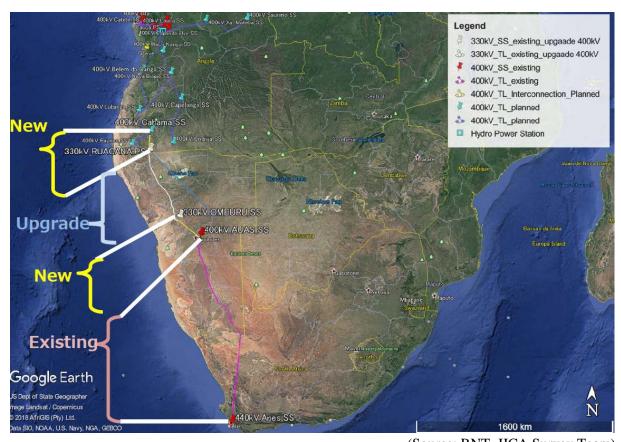


Figure 7-25 Outline of international interconnections with Angol (Source: RNT, JICA Survey Team)

Turning to the current status of the examination, information gathered from RNT reveals the following contact points with SAPP (Southern Africa Power Pool) in the field. The concept for I is as follows: the electric power produced by the large-scale development of the Inga hydropower station in the Democratic Republic of Congo is transmitted through the power system of Angola, then onward through the SAPP international interconnection line, and finally to South Africa.

The investigation has been suspended, however, because of political problems with the Democratic Republic of Congo. When the investigation is resumed, the SAPP team currently examining the feasibility study for interconnection with Namibia will to do the same for this interconnection plan.

As for II, there is no power transmission system that can be connected to the Congo side at present. There are reports that electric power is being received by a private line from a small hydropower station on the Congo side. A similar scheme will be conducted after the development of the Western transmission line. Thus, we confirmed that international connection with Congo would not take place.


As for III, there were once plans to sell electricity to the Copper Belt region, a mining development zone in Zambia. Those plans are now abandoned.

As for IV, the purposes are to sell electricity to South Africa through the international interconnection line passing through Namibia and to aim to ensure a stable supply of electricity by receiving power in drought periods. The SAPP team is currently considering a feasibility study. The concept study has been completed, and international linkage is judged to be possible. The final report of the feasibility study is scheduled to be submitted in FY 2018, after financing. We believe that the project will be started in 2025 after the environmental impact assessment procedure is completed.

The concept for the international interconnection line consists of establishing a new 400 kV transmission line from the Cahama substation in Angola to the Ruakana substation in Namibia, boosting the 330 kV transmission line between the Ruakana substation and Omburu substation in Namibia to 400 kV, establishing a new 400 kV transmission line from the Omburu substation to the Auasa substation in Namibia, the end point of the international interconnection line between South Africa and Namibia, and connecting to the existing 400 kV international interconnection line.

Figure 7-26 shows the concept for the international interconnected transmission lines.

Since the international interconnection line from Angola to South Africa will be a long distance transmission line of over 2,000 km, it will be necessary to carefully consider the system stability problem. While the stability problem falls outside the direct scope of this survey, we want to call attention to it. An interchange power of 400 MW is assumed. If the power development is carried out smoothly in Angola, we believe that there will be no big influence on the electricity supply and demand.

(Source: RNT, JICA Survey Team) Figure 7-26 Outline of the international interconnection plan concept with SAPP

Under these circumstances, cases I and IV are considered to be international interconnections affecting the future interconnection of Angola.

This situation is not considered ideal from a general perspective, as the tidal current control becomes difficult when interconnecting at two or more connection points with a power system based on alternative current. It would be inappropriate, however, to form a direct current interconnection. Doing so would be costly for the conversion facilities and poorly suited to the selling of electricity. There therefore seems to be no problem with case IV, whose feasibility study is currently advancing.

Furthermore, when interconnecting I, it is advisable to connect a part of the generator of the Inga hydroelectric power plant as a power source with a dedicated line, without interconnection with the power system of the Republic of Congo.

The Angola side was apprised of this situation at the JCC meeting and workshop.

Moreover, in order to conduct international interconnection, it will be necessary to first establish a plan to monitor and control the domestic power system. The maintenance of power frequency and economic operations seems to be severely challenged in the current monitoring and control system in Angola.

At the workshop, therefore, we urged the Angola side to understand the need for system monitoring and control. In this report we also introduced the SCADA system to the central dispatching center, the entity supervising and controlling the entire system, in order to enhance the grid monitoring control we would like to propose.

7.7 Transmission network development plan

7.7.1 Policy

First, as for the 220 kV system, a 220 kV substation representing the regional load has been determined to ensure consistency with the regional demand assumption. The 220 kV substation is connected with the 400 kV substation via a 220 kV transmission line, and the existing 220 kV transmission lines, substations, and 220 kV transmission lines connecting the power plant are adjusted as needed to make a plan.

Regarding the 400 kV core system, since RNT is already planning to form a skeleton by 2027, we basically adopt that plan to the system and check the consistency of the new 400 kV transmission lines connecting a power plant and 220 kV power lines with the plan to revise it.

Ultimately, the substation capacity, transmission line capacity, and capacity of the phase modifying facility are determined by a power system analysis.

The development planning procedure is shown in the flowchart of Figure 7-27.

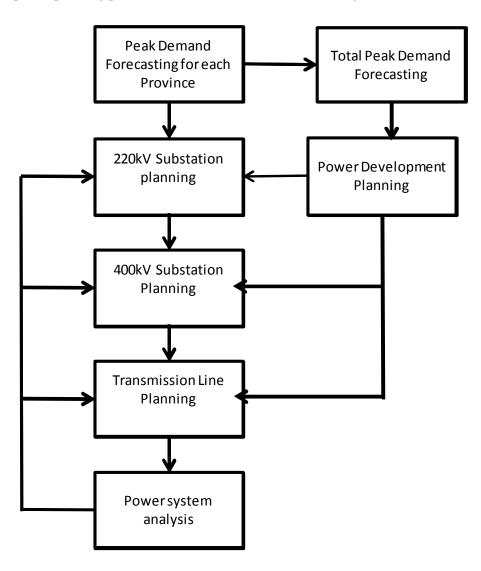


 Figure 7-27
 Flowchart of the Transmission Network Development Plan (Source: JICA Survey Team)

7.7.2 Regional supply substation plan based on demand forecasts

The following table outlines the required substations and capacity for each province (Province) based on the annual maximum electric power demand forecast.

Durationale	0	Substation pla		-	2030	2035		lor mern region
Provincia	Capital	Year	2020	2025			2040	•
		Forecasted Demand (MW)	2123	2752	3183	4220	4734	4
		> 220kV Gnenrator (MW)	614	0	0	0	0	4
		Neccesary Capacity (MVA)	1,677	3,058	3,537	4,689	5,259	Remarks
		Existing Capacity(MVA)	2520	2520	4920	5160	6000	(Operation Year)
		Insufficient capacity (MVA)	-	538	-1,383	-471	-741	
		Total Planned Capacity(MVA)	2520	4920	5160	6000	6240	1
		Subastation Name			ation Capacity			1
		Catete	240	240	240	240	240	a constant and
								exsitng
		Cazenga	300	300	300	420	420	exsiting upgrade2035
Luanda	Luanda	Viana	300	900	900	900	900	exsiting upgrade2025
		Filda	240	240	240	240	240	exsitng
		Camama	360	360	480	480	480	exsiting upgrade 2025
		Cacuaco	120	480	480	720	720	exsiting upgrade2021 2034
		Sambizanga	240	480	480	480	720	exsitng upgrade2025 2036
		Futungo de Belas	240	240	360	360	360	exsitng upgrade2030
		Ramiros	240	240	240	240	240	exsitng
		Bita	240	240	240	240	240	2020
		Zango		360	360	360	360	2022
		Golfe		360	360	360	360	2022
		Chicara		480	480	480	480	2025
		PIV				480	480	2035
		Forecasted Demand (MW)	59	119	177	242	316	1
		> 220kV Gnenrator (MW)						
		Neccesary Capacity (MVA)	65	132	197	269	351	Beneritie
		Existing Capacity(MVA)	305	305	425	425	425	Remarks
		Insufficient capacity (MVA)	-240	-173	-228	-156	-74	(Operation Year)
Bengo	Caxito	Total Planned Capacity(MVA)	305	425	425	425	545	
		Subastation Name			ation Capacity			
		Kapary	240	240	240	240	360	exsitng upgrade2035
		ADA	65	65	65	65	65	
		Caxito	00	60	60	60 60	60	2025
					60	60	60	2025
		Maria Teresa	07	60				2020
		Forecasted Demand (MW)	67	151	221	288	358	1
		> 220kV Gnenrator (MW)						+
		Neccesary Capacity (MVA)	75	168	246	320	398	Remarks
		Existing Capacity(MVA)	310	310	390	390	510	(Operation Year)
		Insufficient capacity (MVA)	-	-142	-144	-70	-112	(operation real)
Kuanza Norte	N'dalatando	Total Planned Capacity(MVA)	310	390	390	510	510	
		Subastation Name		Substa	ation Capacity	(MVA)		
		Cambutas	240	240	240	240	240	exsitng
		N' Dalatando	40	120	120	120	120	existing upgrade2025
		Pambos de Sonhe	30	30	30	30	30	exsitng
		Lucala				120	120	2035
		Forecasted Demand (MW)	103	152	216	290	359	2000
		> 220kV Gnenrator (MW)		102	210	200		1
		Neccesary Capacity (MVA)	115	169	240	323	399	4
								Remarks
Malania	Malania	Existing Capacity(MVA)	130	130	370	370	370	(Operation Year)
Malanje	Malanje	Insufficient capacity (MVA)	120	39	-130	-47	29	1
		Total Planned Capacity(MVA)	130	370 Subst	370	370	490	1
		Subastation Name	100		ation Capacity		100	
		Capanda Elevadora	130	130	130	130	130	existing upgrade2020
-	-	Malanje2(Catepa)	_	240	240	240	360	2022 Upgrade2040
		Forecasted Demand (MW)	73	156	256	370	501	+
		> 220kV Gnenrator (MW)						-
		Neccesary Capacity (MVA)	81	173	284	412	556	Remarks
		Existing Capacity(MVA)	80	80	280	280	280	(Operation Year)
		Insufficient capacity (MVA)	-	93	4	132	276	(Operation Tear)
Uíge	Uíge	Total Planned Capacity(MVA)	80	280	460	580	620	
		Subastation Name			ation Capacity	(MVA)		
		Uíge	40	240	240	240	240	existing upgrade2022
		Maquela do Zombo	40	40	40	40	80	existing upgrade2036
		Negage	-	-	180	180	180	2030
		Sanza Pombo				120	120	2035
		Forecasted Demand (MW)	55	105	164	230	303	2000
		> 220kV Gnenrator (MW)	00	100	1.54	200	000	1
		Neccesary Capacity (MVA)	61	117	182	256	337	1
			366	406	406	406	523	Remarks
		Existing Capacity(MVA)	300					(Operation Year)
701-0	Zeine	Insufficient capacity (MVA)	400	-289	-224	-150	-186	1
Zaire	Zaire	Total Planned Capacity(MVA)	406	406	406	523	523	1
		Subastation Name	0.02		ation Capacity		0.10	
		Soyo	240	240	240	240	240	exsitng
		N'Zeto	63	63	63	63	63	exsitng
		M'Banza Congo	63	63	63	180	180	exsitng upgrade2031
		Tomboco	40	40	40	40	40	2020
		Forecasted Demand (MW)	104	135	178	222	269	
		> 220kV Gnenrator (MW)	104	135	0	0	0	
		Neccesary Capacity (MVA)	0	0	198	247	299	Remarks
		Existing Capacity(MVA)	0	0	0	360	360	(Operation Year)
Cabinda	Cabinda	Insufficient capacity (MVA)	_	0	198	-113	-61	(Operation Year)
		Total Planned Capacity(MVA)	0	0	360	360	360	
		Subastation Name			ation Capacity	(MVA)		
		Cabinda			240	240	240	2030
		Cacongo			120	120	120	2030
	Subtot		3751	6791	7571	8768	9288	2000
	Jubtot	wi i	3731	0/91	/3/1	0700	0200	

Table 7-12220 kV Substation plan based on demand forecast of northern region

(Source: JICA Survey Team)

Based on the anticipated demand for each province, the JICA Survey Team chose the location of the demand center and decided the substation position, working in consultation with RNT. In areas

small-scale demand will continue in the future, the substation capacity (originally set to less than 60 MVA) was standardized to 120 MVA or 240 MVA according to the demand scale. For heavy load areas in Luanda area, 480 MVA or 720 MVA was adopted.

In Table 7-12, the red indicates the existing substation and its capacity, and the blue indicates the new substation and its capacity and the capacity of the substation after expansion. The year of new establishment and year of enhancement are stated in the remarks column.

The same applies to Table 7-13 to Table 7-15.

Area	Provincia	Capital	Year	2020	2025	2030	2035	2040	<u> </u>			
/000	TTOTHIOL	Capital	Forecasted Demand (MW)	101	174	263	369	494	-			
			> 220kV Gnenrator (MW)	101	174	200	000	404	-			
			Neccesary Capacity (MVA)	113	193	292	410	549	Remarks			
			Existing Capacity (MVA)	240	240	480	480	480	(Operation Year)			
			Insufficient capacity (MVA)		-47	-188	-70	69				
			Total Planned Capacity (MVA)	240	480	480	480	600	-			
	Cuanza Sul	Sumbe	Subastation Name	240		ation Capacity		000	-			
	oualiza oui	Guilles	Alto Chingo	120	120	120	120	120	exsitng			
			Gabela	120	120	120	120	180	exsiting upgrade 2037			
			Waco Kungo	120	60	60	60	60	2022			
			Quibala		60	60	60	120	2022			
			Porto Amboim		120	120	120	120	2022			
			Cuacra		60	60	60	60	2025			
			Forecasted Demand (MW)	300	415	563	734	882	2025			
			> 220kV Gnenrator (MW)	300	415	203	/34	882	-			
			Neccesary Capacity (MVA)	000	462	625	815	980	-			
				333					Remarks			
			Existing Capacity(MVA)	550	550	910	1150	1270	(Operation Year)			
			Insufficient capacity (MVA)		-88	-285	-335	-290	-			
			Total Planned Capacity(MVA)	550	910	1150	1270	1390	-			
	Benguela	Benguela	Subastation Name			ation Capacity						
		-	Quileva	310	310	310	310	310	exsitng			
			Benguela Sul	240	240	240	240	240	2018			
			Catumbela		120	120	240	240	2025 upgrade2035			
			Cubal		120	120	120	240	2022 upgrade2038			
Centeral			Alto Catumbela			120	120	120	2030			
			Baria Farta			120	120	120	2030			
			Bocoio		120	120	120	120	2025			
			Forecasted Demand (MW)	132	205	318	454	614	_			
			> 220kV Gnenrator (MW)						_			
			Neccesary Capacity (MVA)	147	228	354	505	682	Remarks			
			Existing Capacity(MVA)	240	240	420	540	540	(Operation Year)			
			Insufficient capacity (MVA)	_	-12	-66	-35	142	(operation rour)			
	Huambo	Huambo	Total Planned Capacity(MVA)	240	420	540	540	780				
			Subastation Name			ation Capacity						
			Belém do Dango	240	240	240	240	480	exsitng upgrade2036			
			Ukuma		60	60	60	60	2025			
			Catchiungo		120	120	120	120	2025			
			Bailundo			120	120	120	2030			
			Forecasted Demand (MW)	41	82	131	208	323				
			> 220kV Gnenrator (MW)									
			Neccesary Capacity (MVA)	46	91	145	231	359	Remarks			
			Existing Capacity(MVA)	120	120	180	300	360	(Operation Year)			
	Bié	Kuito	Insufficient capacity (MVA)	—	-29	-35	-69	-1	(Operation rear)			
	Die	Kuito	Total Planned Capacity(MVA)	120	180	300	360	480				
			Subastation Name		Subst	ation Capacity	(MVA)					
			Kuito	120	120	240	240	360	exsitng upgrade2027 2037			
		-	Andulo		60	60	60	60	2025			
			Camacupa				60	60	2035			
		Subtot		1150	1990	2470	2650	3250				

 Table 7-13
 220 kV Substation plan based on the demand forecast for the central region

Area	Provincia	Capital	Year	2020	2025	2030	2035	2040					
			Forecasted Demand (MW)	121	201	311	443	602					
			> 220kV Gnenrator (MW)	121									
			Neccesary Capacity (MVA)	0	224	345	493	668	Remarks				
			Existing Capacity(MVA)	0	0	780	840	840	(Operation Year)				
			Insufficient capacity (MVA)	_	224	-435	-347	-172					
			Total Planned Capacity(MVA)	0	780	840	840	900					
			Subastation Name		Subst	ation Capacity	(MVA)						
	Huíla	Lubango	Lubango		240	240	240	240	2022				
			Nova Lubango		120	120	120	120	2025				
			Matala		120	120	120	120	2022				
			Caluquembe		60	60	60	120	2025 upgrade2040				
			Quilengues		60	60	60	60	2025				
			Tchamutete		120	120	120	120	2025				
			Capelongo		60	60	60	60	2022				
			Chipindo			60	60	60	2030				
			Forecasted Demand (MW)	39	83	137	200	273					
			> 220kV Gnenrator (MW)	39									
			Neccesary Capacity (MVA)	0	92	152	223	304	Remarks				
			Existing Capacity(MVA)	0	0	240	240	360	(Operation Year)				
	Cunene	Ondjiva	Insufficient capacity (MVA)		92	-88	-17	-56	(Operation real)				
	Cunene C	ongiva	Total Planned Capacity(MVA)	0	240	240	360	360					
			Subastation Name			ation Capacity							
Southern			Ondjiva		120	120	240	240	2025 upgrade2032				
ooutiitiii				Cahama		60	60	60	60	2025			
			Xangongo		60	60	60	60	2025				
			Forecasted Demand (MW)	42	86	141	204	275					
			Planned Gnenrator (MW)	42									
							Neccesary Capacity (MVA)	0	96	157	227	306	Remarks
			Existing Capacity(MVA)	0	0	300	300	360	(Operation Year)				
			Insufficient capacity (MVA)	_	96	-143	-73	-54	(operation real)				
	Cuando-Cubango	Menongue	Total Planned Capacity(MVA)	0	300	300	360	420					
			Subastation Name			ation Capacity							
			Cuchi		60	60	60	60	2022				
			Menangue		240	240	240	240	2022				
			Cuito Cuanavale				60	60	2035				
			Mavinga					60	2040				
			Forecasted Demand (MW)	65	129	169	212	259					
			Planned Gnenrator (MW)	65									
			Neccesary Capacity (MVA)	0	143	188	236	287	Remarks				
			Existing Capacity(MVA)	0	0	360	360	360	(Operation Year)				
	Namibe	Namibe	Insufficient capacity (MVA)	-	143	-172	-124	-73					
			Total Planned Capacity(MVA)	0	360	360	360	360					
			Namibe 240 240 240 240						2022				
			Tombwa		120	120	120	120	2022				
		Subtota		0	1680	1740	1920	2040					

Table 7-14220 kV Substation plan based on the demand forecast for the southern region

Table 7-15	220 kV Substation	plan based on the demand forecast for the	western region
------------	-------------------	---	----------------

Area	Provincia	Capital	Year	2020	2025	2030	2035	2040	
			Forecasted Demand (MW)	28	75	109	157	224	
			Planned Gnenrator (MW)	28					
			Neccesary Capacity (MVA)	0	84	122	175	249	Remarks
			Existing Capacity(MVA)	0	0	240	360	360	(Operation Year)
	Moxico	Luena	Insufficient capacity (MVA)	—	84	-118	-185	-111	
	WOXICO	Luena	Total Planned Capacity(MVA)	0	240	360	360	360	
			Subastation Name		Substa	ation Capacity	(MVA)		
			Luena		240	240	240	240	2025
			Cazombo			60	60	60	2027
			Luau			60	60	60	2027
Ĩ			Forecasted Demand (MW)	38	97	144	198	260	
			Planned Gnenrator (MW)	38					
			Neccesary Capacity (MVA)	0	107	160	221	289	Remarks
		Lucapa	Existing Capacity(MVA)	0	0	300	300	300	(Operation Year)
astern	Louis de Marida		Insufficient capacity (MVA)	—	107	-140	-79	-11	(Operation Tear)
astern	Lunda Norte		Total Planned Capacity(MVA)	0	300	300	300	420	
			Subastation Name		Substa	ation Capacity	(MVA)		
			Lucapa		60	60	60	60	2022
			Dundo		120	120	120	240	2022 upgrade2036
			Xa-Muteba		120	120	120	120	2025
			Forecasted Demand (MW)	26	77	92	135	181	
			Planned Gnenrator (MW)	26					
			Neccesary Capacity (MVA)	0	86	103	149	201	Remarks
			Existing Capacity(MVA)	0	0	120	180	300	(Operation Year)
	Lunda Sur	Saurimo	Insufficient capacity (MVA)	_	86	-17	-31	-99	(Operation Tear)
			Total Planned Capacity(MVA)	0	120	180	300	300	
			Subastation Name		Substa	ation Capacity	(MVA)		
			Saurimo		120	120	240	240	2022 upgrade2032
			Muconda			60	60	60	2027
		Subto	tal	0	660	840	960	1080	
		TOTAL		4901	10941	12081	14058	15418	

7.7.3 220 kV power transmission line plan based on the regional supply substation plan

Based on the result of 7.7.2, the connections between the regional supply substations and main system in the existing plan are decided based on the geographical positions and the starting year of operation. Table 7-17 shows the power transmission line plan compiled based on the result of the power flow analysis.

With regard to the connecting transmission line, a two-line connection was basically adopted in consideration of the N-1 reliability criteria.

Also, a loop circuit formed with a 220 kV system could cause unexpected overloads at the time of an accident. Power transmission lines with one circuit connection were removed to reduce the complexity of the system and make the system as easy to operate as possible.

Regarding the substations located nearby the existing transmission line, we decided to divide the power transmission line into 4 lines π .

Finally, we formed an appropriate power transmission equipment plan by considering these factors and working through a process of repeated trials and errors.

Projects stricken out by red line lines in Table 7-16 are deleted to avoiding the aforementioned loop circuit.

Projects stated in blue are new substation facility plans derived from the demand forecast up to the 2040 fiscal year. All have been added to the existing plans.

The revised number of lines and operation starting years in the existing plan are written in blue.

According to the review of the plan based on the substation supply plan, the length of the transmission line work increased by about 500 km, from 3,269 km to 3,766 km.

			ie iransmissio	i Enic plui ucc				supply substation pla
					number	Line Length	Year	
Project#	Area	Voltage	Starting point	End point	of	Line Lengui	of	Remarks
»J		0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r		(lam)		rtomur no
		(kV)			circuit	(km)	operation	
1	Northern	220	Filda	Golfe	2	7	2022	
2	Northern	220	Bita	Camama	2	21	2022	
	Northern	220	Bita		4		2022	Avoiding Loop circuit
				Rammiros		10		Avoiding Loop circuit
3	Northern	220	Catete	Zango	2	40	2022	
4	Northern	220	Capanda elev.	Maranje	2	110	2022	
5	Northern	220	Kapary	Caxito	2	26	2025	
6	Northern	220	N'Zeto	Tomboco	2	5	2025	Substation inserted
7	Northern	220	M'banza Congo	Tomboco	2	5	2025	Substation inserted
8	Northern	220	Sambizanga	Chicala	2	7	2025	
0						,		4 11 7 1 1
	Northern	220	Futungo de Be las	Chical a	4		2025	Avoiding Loop circuit
9	Northern	220	Catete	Maria Teresa	2	51	2025	
10	Northern	220	Viana	PIV	2	7	2035	
				PIV	4			A voiding Loop aircuit
	Northern	220	Cazong a				2035	Avoiding Loop circuit
11	Northern	220	Uige	Negage	2	5	2030	Substation inserted
12	Northern	220	Pambos de Sonhe	Negage	2	5	2030	Substation inserted
13	Northern	220			2	109		
13			Negage	Sanza Pombo		109	2035	
	Central	220	Cambambe	Gabela	4		2022	Avoiding Loop circuit
14	Central	220	Gabela	Alto Chingo	1	81	2022	Dualization
	Central	220	Gabela	Quibala	4		2022	Avoiding Loop circuit
1.7	1					02		Avoiding Loop circuit
15	Central	220	Quibala	Waco Kungo	2	92	2022	
16	Central	220	Lomaum	Cubal	2	2	2022	
	Central	220	Belem de Dango	Cubal	4		2022	Avoiding Loop circuit
17	1					25		Avoking Loop eneur
17	Central	220	Alto Chingo	Cuacra	2	25	2025	
18	Central	220	Alto Chingo	Port Amboim	2	60	2025	
19	Central	220	Quileva	Nova Biopio	1	18	2025	Dualization
			-					Dumzution
20	Central	220	Quileva	Catumbela	2	8	2025	
21	Central	220	Nova Biopio	Bocoio	2	5	2025	Substation inserted
22	Central	220	Lomaum	Bocoio	2	5	2025	Substation inserted
						5		
	Central	220	Cuba l	Ukuma	4		2025	Avoiding Loop circuit
23	Central	220	Belem do Huambo	Ukuma	2	66	2025	
24	Central	220	Belem do Huambo	Catchiungo	2	9	2025	Substation inserted
25				0		9		
23	Central	220	Kuito	Catchiungo	2	9	2025	Substation inserted
	Central	220	Belem de Dango	Kuit o	4		2027	Avoiding Loop circuit
26	Central	220	Kuito	Andulo	2	124	2025	
27	Central	220	Cubal	Alto Catumbela	2	47	2030	
28	Central	220	Benguela Sul	Catumbela	2	26	2025	
29	Central	220	Catchiungo	Bailundo	2	66	2030	
30	Central	220	Benguela Sul	Baia Farta	2	30	2030	
			0			-		
31	Central	220	Kuito	Chitembo	2	145	2035	
32	Southern	220	Lubango2	Lubango	2	30	2020	
33	Southern	220	Lubango2	Namibe	2	162	2020	
			_					<u> </u>
34	Southern	220	Namibe	Tombwa	2	97	2020	
35	Southern	220	Lubango2	Matala	2	168	2022	
36	Southern	220	Matala HPS	Matala	1	5	2022	
37	Southern	220	Capelongo	Cuchi	2	91	2022	
38	Southern	220	Cuchi	Menongue	2	94	2022	
	-	220	Cahama	Xangongo	2	97	2025	
39	Southern			Xangongo	1	97	2025	
39 40	Southern	220	Ondiire					
39 40	Southern	220	Ondjiva	00		71		
		220 220	Capelongo	Matala	4	71	2027	Avoiding Loop circuit
	Southern		°	00		86		Avoiding Loop circuit
40 41	Southern Southern	220 220	Capelong o Matala	Matala Jamba Mina	+ 1	86	2027 2035	Avoiding Loop circuit
40 41 42	Southern Southern Southern	220 220 220	Capelongo Matala Jamba mina	Matala Jamba Mina Jamba Oma	+ 1 1	86 37	2027 2035 2035	Avoiding Loop circuit
40 41 42 43	Southern Southern Southern Southern	220 220 220 220	Capelongo Matala Jamba mina Capelongo	Matala Jamba Mina Jamba Oma Tchamutete	1 1 1 2	86 37 98	2027 2035 2035 2025	Avoiding Loop circuit
40 41 42	Southern Southern Southern	220 220 220	Capelongo Matala Jamba mina	Matala Jamba Mina Jamba Oma	+ 1 1	86 37	2027 2035 2035	A voiding Loop circuit
40 41 42 43 44	Southern Southern Southern Southern Southern	220 220 220 220 220 220	Capelongo Matala Jamba mina Capelongo Menongue	Matala Jamba Mina Jamba Oma Tchamute te Cuito Cuanavale	+ 1 1 2 2	86 37 98 189	2027 2035 2035 2025 2025 2035	A voiding Loop circuit
40 41 42 43 44 45	Southern Southern Southern Southern Southern Southern	220 220 220 220 220 220 220	Capolongo Matala Jamba mina Capelongo Menongue Cuito Cuanavale	Matala Jamba Mina Jamba Oma Tchamute te Cuito Cuanavale mavinga	+ 1 2 2 2	86 37 98 189 176	2027 2035 2035 2025 2035 2035	Avoiding Loop circuit
40 41 42 43 44	Southern Southern Southern Southern Southern	220 220 220 220 220 220	Capelongo Matala Jamba mina Capelongo Menongue	Matala Jamba Mina Jamba Oma Tchamute te Cuito Cuanavale	1 1 2 2 2 2 2	86 37 98 189	2027 2035 2035 2025 2025 2035	A voiding Loop circuit
40 41 42 43 44 45	Southern Southern Southern Southern Southern Southern	220 220 220 220 220 220 220	Capolongo Matala Jamba mina Capelongo Menongue Cuito Cuanavale	Matala Jamba Mina Jamba Oma Tchamute te Cuito Cuanavale mavinga	+ 1 2 2 2	86 37 98 189 176	2027 2035 2035 2025 2035 2035	A voiding Loop circuit
40 41 42 43 44 45 46 47	Southern Southern Southern Southern Southern Southern Eastern Eastern	220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220	Capolongo Matala Jamba mina Capelongo Menongue Cuito Cuanavale Saurimo Lucapa	Matala Jamba Mina Jamba Oma Tchamutete Cuito Cuanavale mavinga Lucapa Dundo	+ 1 2 2 2 2 2 2	86 37 98 189 176 157 135	2027 2035 2035 2025 2035 2035 2035 2020 2020	A voiding Loop circuit
40 41 42 43 44 45 46 47 48	Southern Southern Southern Southern Southern Southern Eastern Eastern Eastern	220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220	Capolongo Matala Jamba mina Capelongo Menongue Cuito Cuanavale Saurimo Lucapa Saurimo	Matala Jamba Mina Jamba Oma Tchamutete Cuito Cuanavale mavinga Lucapa Dundo Luena	+ 1 2 2 2 2 2 2 2 2	86 37 98 189 176 157 135 265	2027 2035 2035 2025 2035 2035 2035 2020 2020	Avoiding Loop circuit
40 41 42 43 44 45 46 47 48 49	Southern Southern Southern Southern Southern Southern Eastern Eastern	220 220	Capolongo Matala Jamba mina Capelongo Menongue Cuito Cuanavale Saurimo Lucapa Saurimo Saurimo	Matala Jamba Mina Jamba Oma Tchamutete Cuito Cuanavale mavinga Lucapa Dundo Luena Muconda	+ 1 2 2 2 2 2 2 2 2 2 2	86 37 98 189 176 157 135 265 187	2027 2035 2035 2025 2035 2035 2020 2020 2020	A voiding Loop circuit
40 41 42 43 44 45 46 47 48	Southern Southern Southern Southern Southern Southern Eastern Eastern Eastern	220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220	Capolongo Matala Jamba mina Capelongo Menongue Cuito Cuanavale Saurimo Lucapa Saurimo	Matala Jamba Mina Jamba Oma Tchamutete Cuito Cuanavale mavinga Lucapa Dundo Luena	+ 1 2 2 2 2 2 2 2 2	86 37 98 189 176 157 135 265	2027 2035 2035 2025 2035 2035 2035 2020 2020	Avoiding Loop circuit
40 41 42 43 44 45 46 47 48 49 50	Southern Southern Southern Southern Southern Southern Eastern Eastern Eastern Eastern Eastern Eastern	220 220	Capolongo Matala Jamba mina Capelongo Menongue Cuito Cuanavale Saurimo Lucapa Saurimo Saurimo Muconda	Matala Jamba Mina Jamba Oma Tchamutete Cuito Cuanavale mavinga Lucapa Dundo Luena Muconda Luau	+ 1 2 2 2 2 2 2 2 2 2 2 2 2 2	86 37 98 189 176 157 135 265 187 115	2027 2035 2035 2025 2035 2035 2035 2020 2020	Avoiding Loop circuit
40 41 42 43 44 45 46 47 48 49	Southern Southern Southern Southern Southern Eastern Eastern Eastern Eastern Eastern	220 220	Capolongo Matala Jamba mina Capelongo Menongue Cuito Cuanavale Saurimo Lucapa Saurimo Saurimo	Matala Jamba Mina Jamba Oma Tchamutete Cuito Cuanavale mavinga Lucapa Dundo Luena Muconda	+ 1 2 2 2 2 2 2 2 2 2 2	86 37 98 189 176 157 135 265 187	2027 2035 2035 2025 2035 2035 2020 2020 2020	A voiding Loop circuit

Table 7-16 Review of the Transmission Line plan accompanying the regional supply substation plan

7.7.4 Transmission Development plan based on the Generation Development Plan

Based on the Generation Development Plan, we considered connection to the substation or the transmission line in the voltage class transmission system at the closest point from the power generation site, vis-à-vis the generation capacity. The results are shown in Table 7-17.

The connecting transmission lines are omitted for the hydroelectric power plants not scheduled to start operation by 2040.

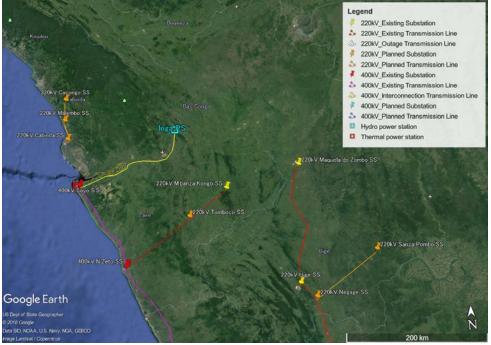
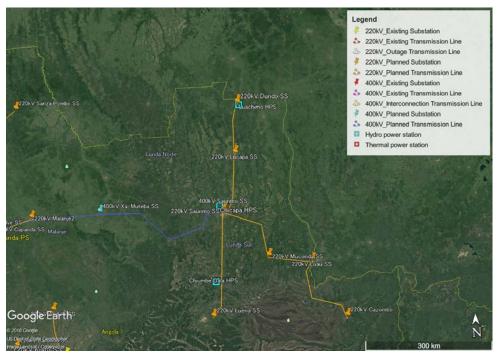

Tuble / I/ Result		110111	351011	Line	com	iccu	on b	uscu	UII U	ne p		Scher ation plan	
Hydropower Plant	(River)	Area	Installed	2017	2018	2020	2025	2030	2035	2040		Transmission Line	
<existing (available="" capacity)="" pp=""></existing>	-	-	1,699	1699	1649	1649	1594	1594	1594	1594	¥7-14	Connected	Distance
<development plan=""></development>				931.5	1928	2169	4341	4851	6701	7154	Voltage	Substation	(km)
HPP Lauca	Kwanza	North	2,070	931.5	1863	2070	2070	2070	2070	2070	400kV	Cambutas	224
HPP Caculo Cabaça	Kwanza	North	2,172				2172	2172	2172	2172	400kV	Cambutas	54
HPP Zenzo	Kwanza	North	950						950	950	400kV	Cambutas	41
HPP Túmulo Caçador	Kwanza	North	453							453	220kV	Cambutas	16
HPP Quissonde	Kwanza	North	121								220kV		-
HPP Genga ②	Quive	North	900						900	900	400kV	Benga Switch-yard	30
HPP Benga	Quive	North	1,000								400kV	-	-
HPP Quilengue (5)	Quive	North	210					210	210	210	220kV	Gabera	37
HPP Lomaum Extension	Catumbela	Central	215		65	65	65	65	65	65	220kV	Nova_Biopio	81
HPP Lomaum2	Catumbela	Central	150								220kV	-	-
HPP Baynes (50% Angola)	Cunene	South	300					300	300	300	400kV	Cahama	195
HPP Jamba Ya Oma	Cunene	South	79								220kV	HPP Jamba Ya Mina	37
HPP Jamba Ya Mina	Cunene	South	205								220kV	Matala	86
HPP Luachimo (extention)		East	34			34	34	34	34	34	60kV	Dundo	5
	Candida	te Total =	7,154	2631	3577	3818	5935	6445	8295	8748			
Thermal Power Plant												Transmission Line	
<pre><development plan=""></development></pre>	Туре	Area	(MW)	2017	2018	2020	2025	2030	2035	2040	Voltage	Connected	Distance
											* onage	Substation	(lam)

 Table 7-17
 Result of Transmission Line connection based on the power generation plan

Thermal Power Plant												Transmission Line	
<pre>classical content and con</pre>	Туре	Area	(MW)	2017	2018	2020	2025	2030	2035	2040	Voltage	Connected	Distance
<development flail=""></development>											voltage	Substation	(km)
TPP Soyo 1	CCGT	Zaire	750	250	750	750	750	750	750	750	400kV	Soyo_SS	5
TPP Soyo 2	CCGT	Zaire	750				750	750	750	750	400kV	Soyo_SS	5
TPP Lobito CCGT No.1	CCGT	Benguela	750				375	750	750	750	400kV	Nova_Biopio_SS	23
TPP Lobito CCGT No.2	CCGT	Benguela	750						750	750	400kV	Nova_Biopio_SS	23
TPP Namibe CCGT No.3	CCGT	Namibe	750							750	220kV	Namibe_SS	17
TPP Lobito CCGT No.4	CCGT	Benguela	375							375	400kV	Nova_Biopio_SS	23
TPP Cacuaco GT No.1	GT	Luanda	375				125	250	375	375	220kV	Cacuaco	5
TPP Cacuaco GT No.2	GT	Luanda	375				125	125	250	375	220kV	Cacuaco	5
TPP Boavista GT No.3	GT	Luanda	375				125	125	250	375	220kV	Sambizanga	5
TPP Quileva GT No.4	GT	Benguela	250					125	250	250	220kV	Quileva	1
TPP Quileva GT No.5	GT	Benguela	250					125	250	250	220kV	Quileva	1
TPP Quileva GT No.6	GT	Benguela	250					125	250	250	220kV	Quileva	1
TPP Soyo GT No.7	GT	Zaire	375					125	250	375	400kV	Soyo_SS	5
	Candida	te Total =	6,375	250	750	750	2,250	3,250	4,875	6,375			


(Source: JICA Survey Team)

The following pages show schematic figures of each transmission line connecting to the power station.

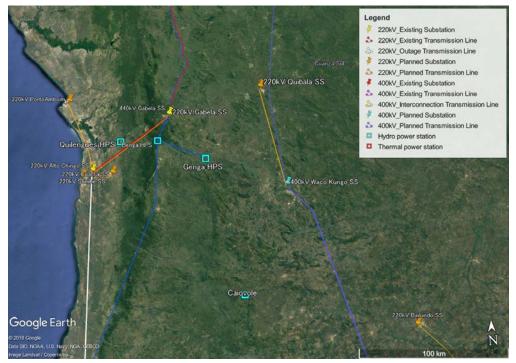

(Source: JICA Survey Team)

Figure 7-28 System connection status of Soyo thermal power station



(Source: JICA Survey Team)

Figure 7-29 Status of connection of Luachimo hydroelectric power station



(Source: JICA Survey Team) Figure 7-30 Connection status of thermal power stations in the Luanda area

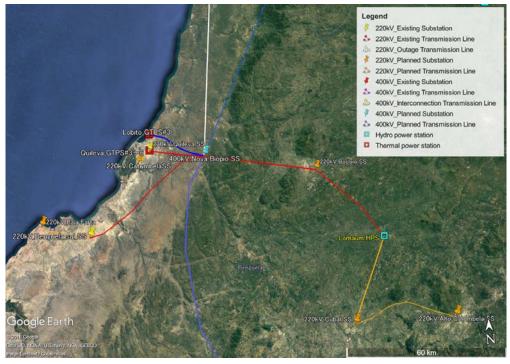

(Source: JICA Survey Team)

Figure 7-31 Connection status of hydropower stations in the Cuanza River area

(Source: JICA Survey Team)

Figure 7-32 Connection status of hydropower stations in the Quive River area

(Source: JICA Survey Team)

Figure 7-33 System connection status around the Lobito thermal power plant

Figure 7-34 System connection status of the Namibe thermal powerplant and Baynes hydropower plant

7.7.5 400 kV main Transmission Line and Substation Plan based on electric power system analysis

Based on the existing power grid development plan for RNT and subsequent studies, we determined the load from the demand assumption for each region, determined the capacity of the regional supply substation, and analyzed the data using the power system analysis program (PSSE), the de facto world standard.

A review of the 400 kV transmission and transformation plan described in 7.6.1 based on the results is shown in Table 7-18 and Table 7-19.

With respect to the 400 kV substation plan, based on the demand assumption of 2040, we plan to establish four (4) new substations and review the capacities and operation years of the planned substations. The required incremental capacities of existing substations were also added.

The total capacity of the new substation is 12,720 MVA, that is, about 5,500 MVA more than the 7,290 MVA capacity of the existing plan up to 2027. In 2040, the rapid increase in the scale of the system will bring the capacity up to 21,840 MVA. The main factor will be the approximately 2,000 MVA increase in the existing substation to meet increased demand from the capital Luanda, about 5,000 MVA (mainly Viana substation). It will be necessary to strengthen the local system by about 2,000 MVA.

Project#	Area	Voltage	Substation	Capacity	Year of		Upg	rade		Final Capacity
		(kV)	Name	(MVA)	operation	2025	2030	2035	2040	(MVA)
1	Cuanza Sul	400	Waco kungo	450	2020	450				900
2	Huambo	400	Belem do Huambo	1,350	2020					1,350
3	Luanda	400	Bita	900	2022	450		450		1,800
4	Huila	400	Lubango	900	2025					900
5	Huila	400	Capelongo	900	2025					900
6	Huila	400	Caluquembe	120	2025					120
7	Benguera	400	Nova Biopio	900	2025					900
8	Southern	400	Cahama	900	2025					900
9	Eastern	400	Saurimo	900	2025					900
10	Lunda Norte	400	Xa-Muteba	360	2025					360
11	Cunene	400	Ondjiva	900	2035					900
12	Huila	400	Quilengues	120	2025					120
13	Cuanza Sul	400	Gabela	900	2025					900
14	Luanda	400	Sambizanga	1,860	2025					1,860
15	Malanje	400	Lucala	900	2025			450		1,350
16	Chipindo	400	Chipindo	360	2025					360
17	Zaire	400	N'Zeto	450	existing	450				900
18	Luanda	400	Viana	210	existing	2,790	930			3,720
19	Bengo	400	Kapary	450	existing	450	450			1,350
20	Luanda	400	Catete	900	existing		450			1,350
	New Substat	ion capaci	ty Total	12,720	Sub Total	4,590	1,830	900	0	21,840

Table 7-18400 kV main Substation plan based on electric power system analysis

As for the 400 kV transmission lines, we will satisfy the N-1 reliability criteria by dualizing the transmission lines connecting to important large-scale hydropower stations and adding a new construction of 6 transmission lines. We reexamined several single circuit transmission lines connecting to the large-scale hydropower station to be changed to double circuit. Also, in response to the addition of four (4) substations to the plan, we re-examined the plan with a total of (10) related transmission lines. We also decided to construct two (2) lines for connection of the Caculo Cabaca hydropower station and to transmit to the Catete substation via the Lauca substation.

Iubic	11/		num rrunsins	sion Line plan	bubeu	on electi	ie pone	system analysis
					number	Line	Year	
Project#	Area	Voltage	Starting point	End point	of	Length	of	Remarks
		(kV)			circuit	(km)	operation	
1	Northern	400	Catete	Bita	2	54	2022	
	Northern	400	Cambutas	Bita	4		2022	
2	Northern	400	Cambutas	Caculo Cabaca	2	54	2023	Dualization
3	Northern	400	Caculo Cabaca	Bita	+		2023	
4	Northern	400	Cambutas	Catete	1	123	2025	Dualization
5	Northern	400	Catete	Viana	1	36	2025	Dualization
6	Northern	400	Lauca	Capanda elev.	1	41	2025	Dualization
7	Northern	400	Kapary	Sambizanga	2	45	2025	For New Substation
8	Northern	400	Lauca	Catete	2	190	2025	Changing Connection Plan
9	Northern	400	Lauca	Caculo Cabaca	2	25	2025	Changing Connection Plan
10	Central	400	Lauca	Waco kungo	1	177	2020	
11	Central	400	Waco kungo	Belem do Huambo	1	174	2020	
	Central	400	Belem do Dango	Lubango-	+		2022	
	Central	400	Belem do Dango	Capelongo-	+	202	2022	
12	Central	400	Lauca	Waco kungo	1	177	2025	Dualization
13	Central	400	Waco kungo	Belem do Huambo	1	174	2025	Dualization
	Central	400	Caculo Cabaca	Nova Biopio	4		2025	
14	Central	400	Cambutas	Gabela	2	131	2025	For New Substation
15	Central	400	Gabela	Benga	2	25	2025	For New Substation
16	Central	400	Benga	Nova Biopio	2	200	2025	For New Substation
	Central	400	Nova Biopio	Lubango	+		2025	
17	Central	400	Benga	Genga	2	30	2035	
18	Southern	400	Belem do Huambo	Caluquembe	2	175	2025	For New Substation
19	Southern	400	Caluque mbe	Lubango2	2	168	2025	For New Substation
20	Southern	400	Belem do Huambo	Chipindo	2	114	2025	For New Substation
21	Southern	400	Chipindo	Capelongo	2	109	2025	For New Substation
22	Southern	400	Nova Biopio	Quilengues	2	117	2025	For New Substation
23	Southern	400	Quilengues	Lubango2	2	143	2025	For New Substation
24	Southern	400	Lubango2	Cahama	2	190	2025	
25	Southern	400	Capelongo	Ondjiva	1	312	2035	
26	Southern	400	Cahama	Ondjiva	1	175	2035	
	Southern-	400	Biopio - Lubango	kaluguembe	2	5	2027	
	Southern-	400	Dango - Lubango	Quilengues	2	5	2027	
27	Southern	400	Cahama	Ruacana	2	125	2027	International Interconnection
28	Southern	400	Cahama	Baynes	2	195	2030	
20	Eastern	400	Capanda_elev	Xa-Muteba	2	266	2025	
			Capanan_oro		1	200	-525	
30	Eastern	400	Xa-Muteba	Surimo	2	335	2025	

 Table 7-19
 400 kV main Transmission Line plan based on electric power system analysis

7.7.6 The future vision of the main power system

Power plants are generally located far from the demand center. To resolve regional power demand unbalance, the transmission lines in the power supply system must have the appropriate specifications to cope with this issue. Thus, the main power system development plan should be basically considered in consideration of the demand from the respective regions and ensure the supply of surplus power efficiently for the regions at times of electricity shortage.

Extending the vision of the main power system over a time frame of at least 20 years is very important for avoiding double investment, given the span of 20 or more years once the transmission lines are built. For the reason above, 2040 is the final year considered under the power master plan.

7.7.7 Demand assumptions for the substations

Based on the load of the substation modeled in the 2037 PSSE data received from RNT, we estimate loads such as those for the 110 kV, 60 kV systems for 2025, 2030, 2035, and 2040 by adjusting to the total demand and the demand of each province in each year, respectively. The estimated load (active power load, Pload; reactive power load, Qload) of each substation is shown in Table 7-20.

	Table 7-20 Substation load data											
Bus			20	025	20	030	20	035	20)40		
Number	Bus Name	Zone Name	Pload	Qload	Pload	Qload	Pload	Qload	Pload	Qload		
Number			(MW)	(Mvar)	(MW)	(Mvar)	(MW)	(Mvar)	(MW)	(Mvar)		
10011	M_CONGO_60 60.000	ZAIRE	29.06	9.07	52.16	16.29	79.28	24.75	115.63	36.10		
10013	NZETO_15 15.000	ZAIRE	5.77	1.80	10.28	3.21	11.87	3.71	16.79	5.24		
10018	SOYO_60_1 60.000	ZAIRE	68.05	21.25	98.29	30.69	129.47	40.43	151.82	47.41		
10031	TOMBOCO_30 30.000	ZAIRE	2.03	0.63	3.70	1.15	9.72	3.04	18.95	5.92		
11001	UIGE_60 60.000	UIGE	139.82	43.66	187.84	58.65	175.63	54.84	203.45	64.24		
11008	M_ZOMBO_60 60.000	UIGE	16.18	5.05	21.81	6.81	20.43	6.38	44.82	14.15		
11013	NEGAGE_60 60.000	UIGE	0.00	0.00	46.42	14.49	125.35	39.14	144.47	45.62		
11018	S_POMBO_60 60.000	UIGE	0.00	0.00	0.00	0.00	31.19	9.74	81.74	25.81		
11021	DAMBA_30 30.000	UIGE	0.00	0.00	0.00	0.00	17.82	5.56	26.04	6.46		
12001	CACUACO_60 60.000	LUANDA	304.86	95.19	386.60	120.72	517.88	161.71	557.44	174.06		
12003	CAMAMA_60 60.000	LUANDA	271.93	84.91	333.47	104.13	415.85	129.85	418.94	130.81		
12006	CAZENGA_60 60.000	LUANDA	163.32	51.00	208.49	65.10	281.24	87.82	300.37	93.79		
12008	FILDA_60 60.000	LUANDA	108.88	34.00	138.99	43.40	187.49	58.54	200.25	62.53		
12010	VIANA_60 60.000	LUANDA	623.39	194.65	798.05	249.19	672.06	209.85	666.65	208.16		
12127	SAMBZANG_60 60.000	LUANDA	270.79	84.56	368.45	115.05	42.35	13.22	489.18	152.75		
12133	M_BENTO_60 60.000	LUANDA	203.95	63.68	250.10	78.09	311.89	97.39	314.20	98.11		
12138	CATETE_60 60.000	LUANDA	30.98	9.67	43.63	13.62	55.60	17.36	56.89	17.76		
12140	RAMIROS_60 60.000	LUANDA	75.79	23.67	95.10	29.70	118.74	37.08	119.72	37.38		
12143	BITA_60 60.000	LUANDA	135.97	42.46	166.74	52.06	207.93	64.93	209.47	65.41		
12146	PIV_60 60.000	LUANDA	0.00	0.00	0.00	0.00	403.23	125.91	399.99	124.90		
12268	ZANGO_60 60.000	LUANDA	155.85	48.66	199.51	62.30	268.82	83.94	266.66	83.26		
12301	CHICALA 60.000	LUANDA	236.94	73.99	322.40	100.67	430.14	134.31	428.04	133.65		
12306	GOLF_60 60.000	LUANDA	169.25	52.85	230.28	71.91	307.24	95.94	305.74	95.47		
13006	KAPARY_60 60.000	BENGO	88.91	27.76	135.29	42.25	203.53	63.55	267.05	83.39		
13007	DANDE_220 220.00	BENGO	20.68	6.46	27.17	8.48	24.18	7.55	28.48	8.89		
13031	CAXITO_110 110.00	BENGO	9.51	2.97	14.19	4.43	14.47	4.52	20.18	6.30		
14010	NDALAT_60 60.000	KWANZA NORTE	52.51	16.39	77.90	24.32	46.56	14.54	60.40	18.86		
14012	P.SONHE_30 30.000	KWANZA NORTE	8.47	2.64	14.98	4.68	15.30	4.78	25.47	7.95		
14024	CAMBUTAS_60 60.000	KWANZA NORTE	66.04	20.62	94.69	29.57	111.38	34.78	141.40	44.15		
14044	M_TERESA_60 60.000	KWANZA NORTE	23.98	7.49	32.96	10.29	41.44	12.94	47.67	14.89		
14070	LUCALA_60 60.000	KWANZA NORTE	0.00	0.00	0.00	0.00	73.39	22.92	83.02	25.92		
15017	MALANJE_110_110.00	MALANGE	95.43	29.80	140.14	43.76	189.35	59.12	237.14	74.05		
15020	CAP_ELEV_110110.00	MALANGE	51.38	16.04	67.90	21.20	89.60	27.98	104.00	32.47		
		MALANGE	0.00	0.00	0.00	0.00	0.97	0.30	2.20	0.69		
15022	CANGNDAL 110110.00	MALANGE	4.99	1.56	8.15	2.54	10.55	3.30	15.68	4.89		

Table 7-20Substation load data

		1	20		20	30	20	035	20	040
Bus Number	Bus Name	Zone Name	Pload	Qload	Pload	Qload	Pload	Qload	Pload	Qload
Number			(MW)	(Mvar)	(MW)	(Mvar)	(MW)	(Mvar)	(MW)	(Mvar)
20027	KILEVA_60 60.000	BENGUELA	106.25	33.18	144.68	45.18	151.28	47.24	147.09	45.93
	CATUMB_1_60_60.000	BENGUELA	74.22	23.17	94.28	29.44	121.48	37.93	121.76	38.02
20066	B.SUL 60 60.000	BENGUELA	169.94	53.06	183.63	57.34	196.91	61.49	222.54	69.49
20072	CUBAL_60 60.000	BENGUELA	52.54	16.40	53.11	16.58	78.86	24.63	119.84	37.42
20075	BOCOIO 60 60.000	BENGUELA	12.56	3.92	17.91	5.59	69.69	21.76	116.93	36.51
20077	B.FARTA 60 60.000	BENGUELA	0.00	0.00	46.91	14.65	64.93	20.27	69.46	21.69
20079	A.CATUMB_60_60.000	BENGUELA	0.00	0.00	22.13	6.91	50.72	15.84	84.36	26.34
21014	DANGO 60 60.000	HUAMBO	150.72	47.06	224.73	70,17	313.48	97.88	394.64	123.23
21025	UKUMA 60 60.000	HUAMBO	11.56	3.61	17.27	5.39	23.71	7.40	44.54	13.91
	CATCH 60 60.000	HUAMBO	43.02	13.43	40.38	12.61	59.25	18.50	86.08	26.88
	BAILUNDO 60 60.000	НИАМВО	0.00	0.00	36.04	11.25	57.70	18.02	88.27	27.56
		BIE	69.77	21.79	103.59	32.35	174.09	54.36	254.15	79.36
22009		BIE	12.33	3.85	27.19	8.49	28.24	8.82	50.33	15.72
	CHITEMBO 30 30.000	BIE	0.00	0.00	0.00	0.00	5.50	1.72	18.87	5.89
	GABELA 60 60.000	KWANZA SUL	60.93	19.02	88.76	27.71	107.68	33.62	138.80	43.34
	A.CH.RNT 60 60.000	KWANZA SUL	35.59	11.11	63.56	19.85	70.93	22.15	97.85	30.55
	W.KUNGO 60 60.000	KWANZA SUL	10.77	3.36	17.19	5.37	22.27	6.95	43.43	13.56
	CUACRA 60 60.000	KWANZA SUL	14.68	4.58	23.59	7.37	28.14	8.79	29.38	9,17
	P_AMBOIM_60 60.000	KWANZA SUL	38,46	12.01	47.89	14.95	95.75	29.90	97.45	30,43
		KWANZA SUL	13.47	4.21	21.85	6.82	34.97	10.92	66.86	20.88
	MUSSENDE 110110.00	KWANZA SUL	0.00	0.00	0.00	0.00	9.57	2.99	20.54	6.41
	NAMIBE 60 2 60.000	NAMIBE	93.69	29.26	125.99	39.34	174.16	54.38	212.68	66.41
		NAMIBE	35.01	10.93	43.01	13.43	38.12	11.90	45.89	14.33
	LUBANG 3 60 60.000	HUILA	67.50	21.08	92.73	28.96	142.21	44.40	198.53	61.99
	MATALA 60 60.000	HUILA	18.38	5.74	25.83	8.06	43.68	13.64	64.22	20.05
	TCHAMUTE 60 60.000	HUILA	41.02	12.81	46.43	14.50	56.33	17.59	61.63	19.24
	KALUKEMB 60 60.000	HUILA	13.34	4.17	25.43	7.94	35.78	11.17	58.70	18.33
	QUILENGS 60 60.000	HUILA	11.12	3.47	22.70	7.09	32.69	10.21	54.20	16.92
	NOVO LUB 60 60.000	HUILA	30.14	9.41	41.78	13.05	65.40	20.42	87.16	27.21
	CAPLONGO 60 60.000	HUILA	19.80	6.18	25.35	7.91	31.41	9.81	36.35	11.35
	CHIPINDO 60 60.000	HUILA	0.00	0.00	30.38	9.49	35.96	11.23	40.80	12.74
	CUCHI 30 30.000	K.KUBANGO	17.05	5.32	23.43	7.32	23.98	7.49	24.12	7.53
	MENONGUE 60 60.000	K.KUBANGO	69.25	21.62	117.89	36.81	172.45	53.85	214.51	66.98
	C_CUANVL 30 30.000	K.KUBANGO	0.00	0.00	0.00	0.00	7.72	2.41	22.31	6.97
	MAVINGA 30 30.000	K.KUBANGO	0.00	0.00	0.00	0.00	0.00	0.00	14.34	4.48
		CUNENE	3.18	0.99	8.93	2.79	9.31	2.91	12.81	3.97
33004		CUNENE	9.73	3.04	15.94	4.98	28.26	8.82	51.06	12.04
	ONDJIVA 60 60.000	CUNENE	69.79	21.79	112.12	35.01	162.69	50.80	209.45	69.34
	DUNDO 60 60.000	LUNDA NORTE	38.61	12.06	56.51	17.65	95.90	29.94	123,95	38.70
		LUNDA NORTE	24.83	7.75	33.82	10.56	38.96	12.17	50.43	15.75
40031	X7 MUTBA 110110.00	LUNDA NORTE	33.05	10.32	53.91	16.83	63.63	19.87	85.51	26.70
41021		LUNDA SUL	77.40	24.17	89.14	27.84	130.45	40.73	171.55	53.57
	MUCONDA_30 30.000	LUNDA SUL	0.00	0.00	3.24	1.01	4.04	1.26	9.06	2.83
	LUENA 110 110.00	MOXICO	75.20	23.48	77.93	24.33	122.12	38.13	172.14	53.75
42031	LUAU_110 110.00	MOXICO	0.00	0.00	16.28	5.08	17.91	5.59	26.60	8.31
42041	CAZOMBO 30 30.000	MOXICO	0.00	0.00	15.18	4.74	17.45	5.45	25.27	7.89
12041	<u></u>	Total	5059.60	1579.86	6954.31	2171.48	8957.75	2797.06	10956.37	3421.13

7.7.8 The transmission development plan for 2040

We determined the power system model for 2040 based on the 2040 PSSE data offered from RNT. We then applied the model to the power plan and demand assumptions of the JICA Survey Team. At the same time, we conducted power flow calculations and considered the power system plan up to 2040.

In planning the power transmission, we basically prepared double circuit for the routes for the 440 kV and 220 kV transmission lines, the main components of the power system, to meet the N-1 reliability criteria. Note that a different voltage loop system, such as 400 kV and 220V, is operating in the main power system of Angola. If, under such circumstances, an N - 1 contingency occurs on a 400 kV transmission line, an unexpected event could lead to an overload on the 220 kV transmission line. We attempt to avoid such a complex situation by composing a loop system only for the 400 kV system, that with the highest voltage. The 200 kV system, meanwhile, is to be a radial interconnected system.

Currently, many small diesel generators are installed in Luanda and other cities. However, considering the power generation efficiency etc., it is uneconomical, so we will gradually abolish it.

Currently, electric power is supplied to the center of Luanda mainly from the 400/220 kV substations(Viana, Kapary, Catete) using 220 kV T/L. In addition, this system is a loop system of 400/220 kV, with many small DGs connected in the loop.

In 2040, the demand for this area will be more than 4,000MW, which is about four times the current level demand, so it is planned to establish 400/220 kV substation (Bita, Sambizanga) and others several 220/60 kV substations.

In the future, we propose to abolish the DG in order, and introduce CCGT into the 220 kV power system and make the system configuration simple by making it a radial system.

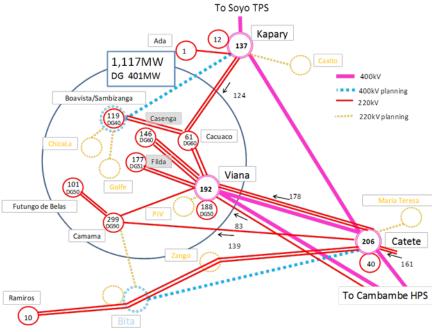


Figure 7-35 Main power system of the center of Luanda in 2017 (400 kV, 220 kV)

According to the plan of RNT, Golfe substation (the new 220/60 kV substation) is planned to be connected to the 400/220 kV Viana substation. In this plan, the load will be concentrated on the Viana substation.

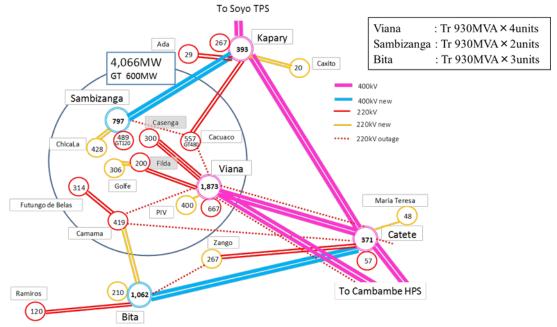


Figure 7-36 Main power system of the center of Luanda in 2040 (RNT's draft)

The connection between the Golfe substation to the Sambizanga substation results in a balanced system structure as shown in the figure below.

The distance between the Golfe substation and the Sambizanga substation is about 5 km, but because it is a densely populated residential area, it is considered difficult to construct an overhead power transmission line.

However, according to the RNT, in the future there is also a land readjustment plan in this area, in which case, there is a possibility that it is possible to construction of overhead transmission lines.

Moreover, construction is possible if it is an underground transmission line.

Therefore, JICA survey team adopted this plan as a master plan.

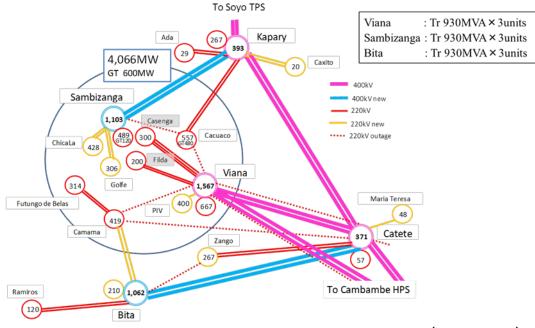


Figure 7-37 Main power system of the center of Luanda in 2040 (JICA's draft)

Even in 2040, in the state of two lines, there is no problem in both voltage and load flow, but if it becomes one line, the voltage sensitivity of the bus becomes extremely high as shown in the following table, and It may be very difficult to operate this network.

Therefore, the three-line configuration is a measure for securing the situation of two lines even in the situation of N-1 (one line stop).

- 1					
	SC Capacity	Bus Voltage	sensitivity		
	(MVA)	(kV)	(kV/MVA)		
	75	409.1			
	74	407.1	1.8		
	73	404.3	2.9		
	72	400.1	4.2		
	71	Unconver	gence		

Table 7-21	Sensitivity	of 400kV	Saurimo	Bus

As a representative measure against high voltage sensitivity, installation of SVC (Static Var Compensator) is conceivable.

The following figure shows the situation when the Capanda = Xa - Mutenba T/L and the Mutenba = Saurimo T/L each become one line in the case where the SVC is installed at the 400 kV bus of the Saurimo substation.

Even if it becomes one circuit line(N-1 contingency), there is no problem situation, indicating that installation of SVC is effective.

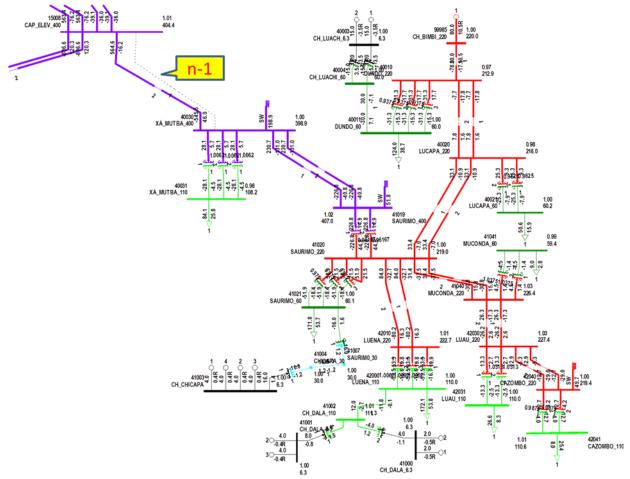


Figure 7-38 Eastern bulk power system calculation result in 2040 (Capanda=Xa-Mutenba T/L : N-1)

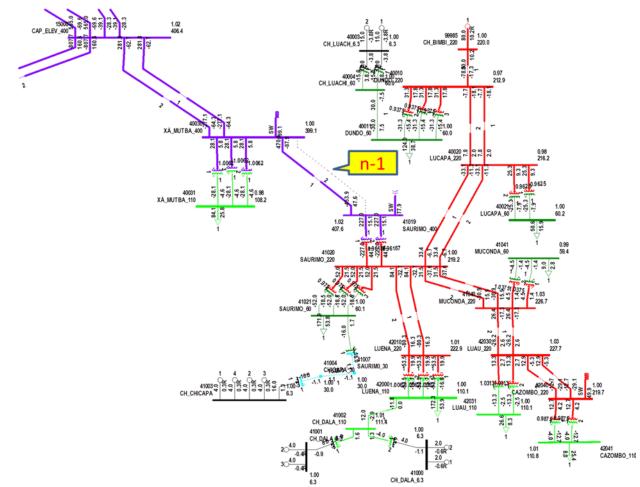


Figure 7-39 Eastern bulk power system calculation result in 2040 (Mutenba = Saurimo T/L : N-1)

The following table shows the cost comparison of Statcom type SVC installation and one line enhancement of a 400 kV transmission line (making this Capanda = Xa - Mutenba = Saurimo T/L 3 circuit lines).

Just to be sure, even if two units of SVC are installed as troubleshooting measures, since the cost of installing SVC is significantly lower, JICA survey team proposes a SVC installation plan.

Table 7-22 Cost Comparison												
Item	Voltage (kV)	Rating	Unit Cost (MUSD)									
Statcom SVC												
Including bay with transformer & switchgear	400	±150MVA	33									
Stactom SVC × 2	400	±150MVA × 2units	66									
Capanda =Xa-Xutenba =Sautemo T/L	400	700km ×1cct	546									

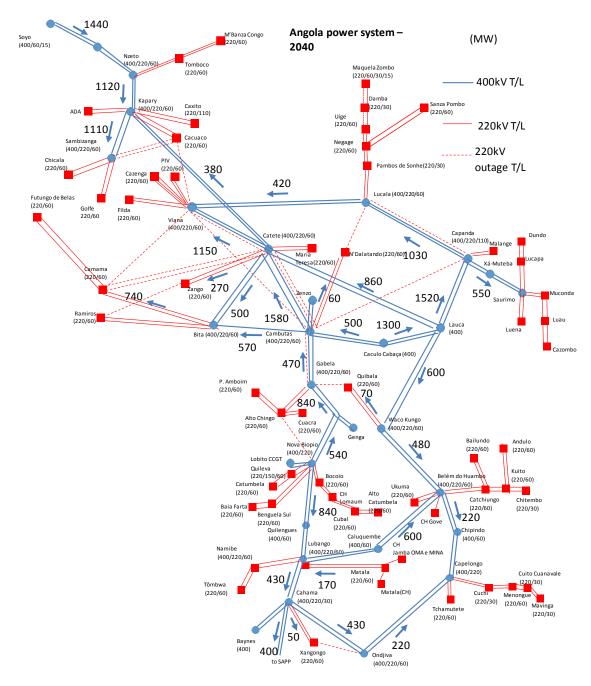


Figure 7-40Main power system in 2040 (400 kV, 220 kV)
(Source: JICA Survey Team)

7.7.9 The evaluation for the power system analysis

PSSE verified that there is no overload with transmission lines and transformers under the n-1 contingency. All of the transmission lines above have capacities of 400 kV, 220 kV and over, and all of the primary transformers have capacities of 220 kV and over (such as 400 kV/220 kV, and 220 kV/60 kV). As mentioned above, the 400 kV system is a loop system, while the 200 kV system is arranged as a radial interconnected system to avoid the operation of a very complicated system consisting of different voltage loop systems of 400 kV and 220 kV. This arrangement makes it possible for the system operator to understand the operating condition of the main system of 400 kV and 220 kV facilities even when the system outages of a system differ from ordinary system outages due to transmission line maintenance, etc.

7.7.10 Validity of distributed installation of CCGT

In that case where CCGT is intensively installed at Soyo, the additional construction of 400 kV transmission lines (approximately 330km) is required between Soyo S/S and KAPARY S/S.

The draft adopted by the JICA Survey Team at this time calls for concentrated CCGT installation not only in Soyo, but also dispersed CCGT installation in LOBITO and NABIBE for securing energy security and avoiding long distances between the transmission lines in place.

The draft values for distributed installations and concentrated installations are shown in Table 7-23.To compare them, there shall be no difference among substation's demand in this condition. The output of the power plants (Soyo, LOBITO, NABIBIE and other power plants), shown in Table 7-23, is basically the same.

Table 7-25 Transmission losses of each CCOT instance site in 2040												
	Distri	Soyo,Lobito buted insta JICA Surve	llation	CCGT Soyo Concentrated installation								
	CC	GT Genera	tion	CCC	GT Generat	ion						
	S	oyo:600 M	W	So	yo:3120 M\	N						
	Lo	bito:1800 N	/W	L	obito:0 MW	1						
	Na	abibe:720 N	1VV	Nabibe:0 MW								
Decion	Generation	Demand	Transmission	Generation	Demand	Transmission						
Region	(MW)	(MW)	loss (MW)	(MW)	(MW)	loss (MW)						
NORTE	7075.7	6569.9	159.8	9100.5	6569.9	163.8						
CENTRO	3024.0	2313.2	58.0	1224.0	2313.2	67.6						
SUL	1438.0	1408.8	67.1	1198.0	1408.8	38.2						
LESTE	138.0	664.5	27.8	138.0	664.5	27.8						
SAPP	0.0	400.0	6.6	0.0	400.0	6.6						
TOTAL	11675.7	11356.4	319.3	11660.5	11356.4	304.0						

 Table 7-23
 Transmission losses of each CCGT installed site in 2040

(Source: JICA Survey Team)

As the comparison of transmission loss in Table 7-23 shows, the draft values for distributed installation and concentrated installation are 319.3 MW and 304.0 MW, respectively. Thus, the transmission loss from the distributed installation is 15.3 MW higher than that from the concentrated one, and totals the equivalent of about 105% of the transmission loss of the concentrated installation draft value. There is no obvious difference between two plans. This comparison is considered one index showing the adequacy of the distributed power plant installation plan in the power system if the viewpoint of avoiding enhancement of long-distance transmission lines and securing energy security are considered.

7.7.11 Consideration for measures to reduce power transmission loss

Figure 7-36 shows the main power system plan for 2040 formulated using data provided PSSE.

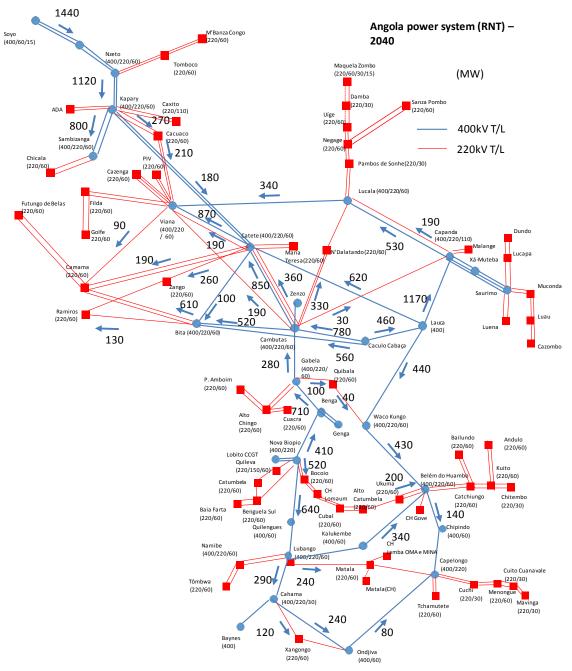


Figure 7-41RNT's power system plan in 2040 (400 kV, 220 kV)
(Source: JICA Survey Team)

Table 7-22 shows the results of a comparison of the transmission loss between the drafts of the JICA Survey Team and RNT. There is no difference in the substation demand condition between the two plans in the comparison. The power plant outputs (Soyo power plant included) are basically the same.

	JICA Su	irvey Team	n's plan	RNT's plan				
Region	Generation (MW)	Demand (MW)	Transmission loss(MW)	Generation (MW)	Demand (MW)	Transmission loss(MW)		
NORTE	7437.0	6569.9	174.0	7524.2	6569.9	213.6		
CENTRO	2664.0	2313.2	49.8	2664.0	2313.2	88.9		
SUL	1438.0	1408.8	62.4	1438.0	1408.8	70.8		
LESTE	138.0	664.5	27.8	138.0	664.5	27.8		
SAPP	0.0	400.0	6.6	0.0	400.0	6.6		
TOTAL	11677.0	11356.4	320.7	11764.2	11356.4	407.8		

Table 7-24Transmission losses in 2040

According to the transmission loss comparison shown in Table 7-24, the values for the RNT and JICA Survey Team drafts are 407.8 MW and 320.7 MW, respectively. Hence, the transmission loss of the JICA Survey Team's draft is 87.1MW less than the RNT's (or approximately 80% of the loss in the RNT draft). This result is one indicator showing the validity of the JICA study team draft.

7.7.12 Annual plan for transmission development system

The following shows the transmission development plans (2025, 2030, and 2035) in the main power system formulated based on the generator plan in Table 7-17 and substation plan in Table 7-20. Basically, the 400 kV transmission line system will have a loop configuration and the 220 kV system will be radial.

PSSE verified that there is no overload with transmission lines or transformers under the n-1 contingency. All of the above transmission lines have capacities of 400 kV, 220 kV and over, and all of the primary transformers have capacities of 220 kV and over (such as 400 kV/220 kV, and 220 kV/60 kV).

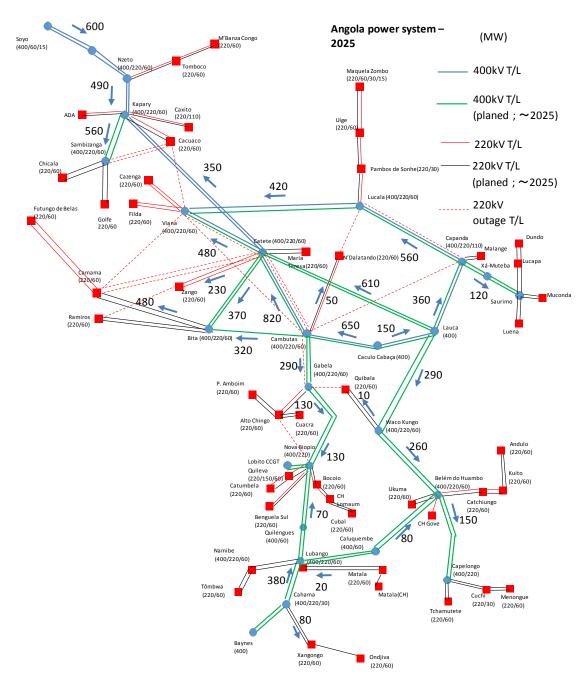


Figure 7-42 Main power system in 2025 (400 kV, 220 kV) (Source: JICA Survey Team)

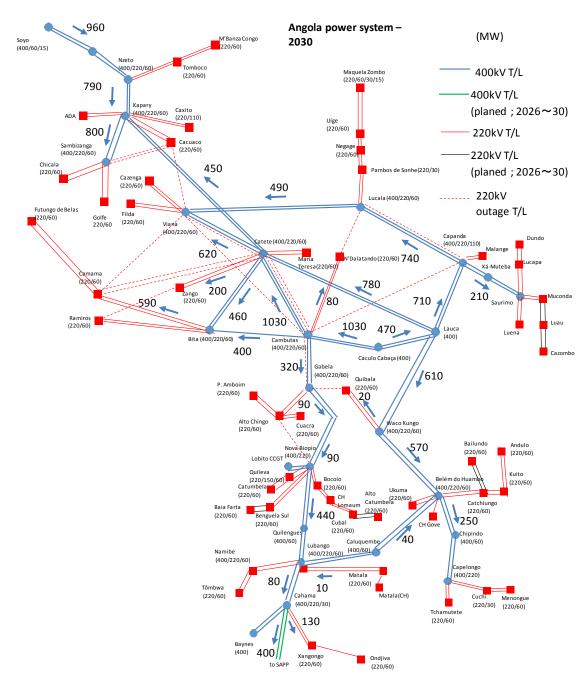


Figure 7-43 Main power system in 2030 (400 kV, 220 kV) (Source: JICA Survey Team)

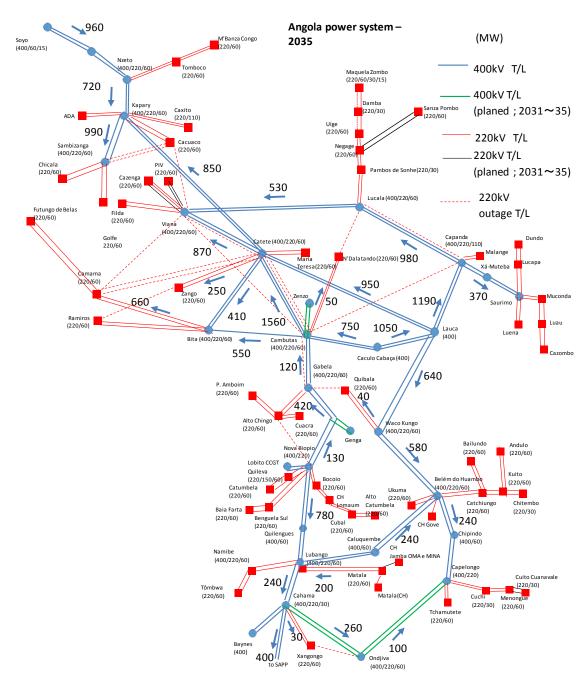


Figure 7-44 Main power system in 2035 (400 kV, 220 kV) (Source: JICA Survey Team)

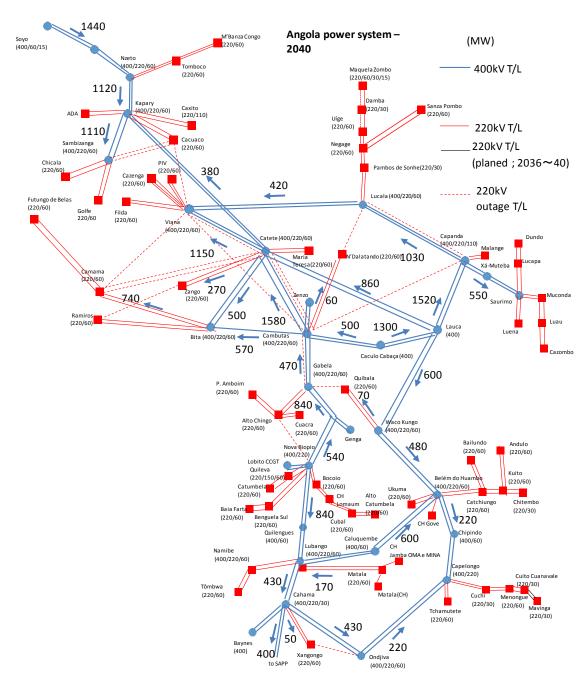


Figure 7-45 Main power system in 2040 (400 kV, 220 kV)

7.7.13 Required volume of reactive power compensators

The required volume of reactive power compensators of bulk power system, in each voltage class for every five years are shown below.

	1	Bus Voltage to		hunt Rea		-				Shunt Capacitor (MVA)			
Bus No.	Substation MANE	be controlled (kV)	2025	2030	2035	2040	2025	2030	2035	2040			
12118	VIANA	400	0	0	0	0	250	400	450	450			
12125	SAMBZANG_400	400	0	0	0	0	50	400	450	450			
12141	BITA_400	400	0	0	0	0	50	100	200	250			
13004	KAPARY_400	400	0	0	0	0	300	300	450	450			
20100	N_BIOPIO_400	400	50	50	50	50	0	0	0	0			
23016	W.KUNGO_400	400	350	350	350	350	0	0	0	0			
31024	LUBANGO_400	400	300	300	300	300	0	0	0	0			
31501	CAPLONGO_400	400	200	200	200	200	0	0	0	0			
31510	KALUKEMB_400	400	250	250	250	250	0	0	0	0			
33000	CAHAMA_400	400	150	150	200	200	0	0	0	0			
33020	ONDJIVA_400	400	-	-	150	150	-	-	0	0			
40030	XA_MUTBA_400	400	350	350	350	350	0	0	0	0			
41019	SAURIMO_400	400	150	150	150	150	0	0	0	0			
10010	M_CONGO_220	220	20	20	20	20	0	0	40	40			
11000	UIGE_220	220	0	0	0	0	40	100	180	180			
11007	M_ZOMBO_220	220	20	20	20	20	20	20	20	40			
11017	S_POMBO_220	220	0	0	0	0	0	0	40	100			
11020	DAMBA_220	220	0	0	0	0	0	0	0	0			
12002	CAMAMA_220	220	0	0	0	0	100	100	250	250			
12005	CAZENGA_220	220	0	0	0	0	60	140	140	180			
12132	M_BENTO_220	220	0	0	0	0	120	200	200	200			
20065	B.SUL_220	220	0	0	0	0	100	100	100	100			
22000	KUITO_220	220	100	100	100	100	0	0	40	180			
32003	MENONGUE_220	220	100	100	100	100	0	0	20	100			
42040	CAZOMBO_220	220	50	50	50	50	0	0	0	0			
	Total		2090	2090	2290	2290	1090	1860	2580	2970			
	SVC	400			±1	50(MVA)	at SAURI	МО					

 Table 7-25
 Required Volume of Reactive Power Compensators in each Substation

7.7.14 Fault Current

The three-phase short circuit fault currents of the 400kV and 220kV buses of the Angola electric power system are shown below.

Calculations are carried out under the following conditions.

- Automatic sequencing fault calculation function of PSSE is used.
- All generators installed in the system in each year are being operated.
- In order to obtain a severe calculation result, a virtual power source of 40 kA was connected to Namibia's international interconnection line..

In each year, the three phase short circuit fault current is within the specified 40kA or less.

Table 7-20 Three-Phase Short Circuit Fault Currents													
Bus	Bus Name	Voltage		Fault Cur			Bus	Bus Name	Voltage		Fault Cur		
			2025	2030	2035	2040	Number	Dus Maine	(kV)	2025	2030	2035	2040
10005	SOYO_400	400	10.1	10.6	11.2	11.6	20071	CUBAL_220	220	2.8	3.8	4.3	4.3
10006	SOYO_400_2	400	10.0	10.5	11.1	11.5	20073	CATUMB_220	220	3.4	6.2	8.7	8.8
10007	NZETO_400	400	8.9	9.1	9.6	9.7	20074	BOCOIO_220	220	3.2	4.7	5.6	5.7
10008	NZETO_220	220	9.1	9.2	9.4	9.3	20076	B.FARTA_220	220	-	4.1	5.0	5.1
	M_CONGO_220	220	2.4	2.4	2.4	2.4	20078	A.CATUMB_220	220	-	2.9	3.2	3.3
10030	TOMBOCO 220	220	3.6	3.6	3.6	3.6	20100	N_BIOPIO_400	400	7.1	8.6	13.7	15.3
11000	UIGE_220	220	2.0	2.0	2.3	2.4	20110	LOBITO PS	400	6.8	8.1	13.3	15.1
	M_ZOMBO_220	220	1.2	1.2	1.3	1.4	21003	GOVE_4_220	220	2.4	2.4	2.6	2.5
11012	NEGAGE_220	220	2.1	2.2	2.5	2.6	21003	DANGO_1_220	220	4.3	4.6	5.6	5.7
11012		220	2.1	2.2	1.7	1.8	21013		400	4.3	4.0	7.7	8.0
	S_POMBO_220		-	-				DANGO_400					
11020	DAMBA_220	220			1.7	1.7	21024	UKUMA_220	220	3.0	3.1	3.4	3.5
12000	CACUACO_220	220	10.7	13.0	15.4	16.4	21030	CATCH_220	220	2.9	3.2	3.5	3.7
12002	CAMAMA_220	220	10.4	10.6	11.9	11.9	21035	BAILUNDO_220	220	-	2.2	2.3	2.3
12005	CAZENGA_220	220	11.3	11.6	13.7	13.8	22000	KUITO_220	220	2.4	2.7	2.8	2.9
12007	FILDA_220	220	13.0	13.5	13.7	13.8	22008	ANDULO_220	220	1.6	1.8	1.8	1.8
12009	VIANA_220	220	18.1	19.0	19.4	19.7	22020	CHITEMBO_220	220	-	1.6	1.7	1.6
12100	CACUACO_GT	220	10.3	12.5	15.0	16.0	23001	GABELA_220	220	10.1	10.4	11.3	11.4
12118	VIANA_400	400	13.8	14.5	15.3	15.6	23004	A.CH.RNT_220	220	5.0	5.1	5.3	5.3
12125	SAMBZANG_400	400	10.1	10.4	11.6	12.3	23010	W.KUNGO_220	220	8.8	9.0	9.4	9.4
12126	SAMBZANGA220	220	13.1	13.4	16.4	17.1	23012	CUACRA_220	220	4.1	4.2	4.4	4.4
12128	SAMBZANGA GT	220	12.3	12.6	15.3	16.1	23016	W.KUNGO_400	400	7.9	8.2	8.9	9.1
12132	M_BENTO_220	220	7.9	8.0	8.7	8.8	23017	P_AMBOIM_220	220	3.3	3.4	3.5	3.5
12136	CATETE 400	400	17.7	18.6	20.4	20.9	23019	GABELA_400	400	9.7	10.4	13.1	13.3
12130	CATETE_220	220	13.0	13.0	13.4	13.9	23020	QUIBALA 220	220	3.6	3.7	3.8	3.8
12137	RAMIROS_220	220	7.1	7.2	7.8	7.8	23020	BENGA_400	400	- 3.0	- 3.7	12.6	13.0
		400	12.1	12.4					400	7.5	8.0	12.0	10.8
	BITA_400				13.2	13.3	23024	GENGA_400					
12142	BITA_220	220	13.0	13.2	15.3	15.4	30012	NAMIBE_220	220	2.8	3.1	3.4	9.7
12145	PIV_220	220	-	-	16.8	17.0	30016	TOMBWA 220	220	1.9	2.0	2.1	3.7
12267	ZANGO 220	220	7.0	7.1	7.2	7.3	30112	NABIBE CCGT	220	-	-	-	10.0
12300	CHICALA_220	220	11.9	12.1	14.5	15.0	31015	MATALA_4_220	220	1.8	1.9	3.6	3.7
12305	GOLF	220	12.0	12.1	14.5	15.1	31024	LUBANGO_400	400	5.5	7.6	9.1	10.4
13004	KAPARY_400	400	14.0	14.6	16.3	17.3	31027	LUBANGO_220	220	5.5	6.6	8.2	8.6
13005	KAPARY_220	220	13.3	16.6	18.8	19.4	31029	MATALA_220	220	1.9	2.0	3.9	4.0
13007	DANDE_220	220	10.3	12.2	13.3	13.6	31031	J_MINA_220	220	1.4	1.5	3.9	4.0
13030	CAXITO_220	220	9.1	10.6	11.4	11.5	31036	J_OMA_220	220	-	0.9	2.3	2.3
14005	CAMBAMBE_220	220	24.3	24.7	26.1	26.1	31043	TCHAMUTE 220	220	1.9	1.8	2.0	2.0
14007	LUCALA_220	220	4.0	3.9	5.4	5.5	31060	QUILENGS_400	400	5.9	7.3	9.5	10.4
14008	LUCALA_400	400	13.0	13.2	13.6	13.7	31300	NOVO_LUB_220	220	7.0	8.7	10.6	13.3
14009	NDALAT_220	220	6.1	6.2	6.2	6.2	31501	CAPLONGO_400	400	3.2	3.3	4.9	5.0
14011	P.SONHE_220	220	2.9	2.9	3.5	3.6	31502	CAPLONGO_220	220	2.8	2.6	3.1	3.0
14016	CAMBUTAS_220	220	27.1	27.6	29.5	29.5	31510	KALUKEMB_400	400	5.2	6.2	7.0	7.4
14017	CAMBUTAS_400	400	21.5	22.2	26.2	26.6	31511	CHIPINDO_400	400	-	4.3	5.6	5.8
14025	CBB 2 1	220	18.4	18.6	19.4	19.3	32000	CUCHI 220	220	1.8	1.8	2.1	2.1
14026	CBB_2_2	220	18.4	18.6	19.4	19.3	32003	MENONGUE_220	220	1.4	1.4	1.6	1.6
	CBB_2_3	220	18.4	18.6	19.4	19.3	32015	C_CUANVL_220	220	-		1.0	0.9
14027	CBB 2 4	220	18.4	18.6	19.4	19.3	32013	MAVINGA 220	220		_	0.8	0.9
14028	M_TERESA_220	220	5.5	5.5	5.5	5.6	33000	CAHAMA_400	400	3.6	6.7	8.0	8.4
14043		400											
	LAUCA_400		28.6	28.5	31.5	31.7	33001	CAHAMA_220	220	2.6	3.2	3.4	3.5
14053	LAUCA_EC_220	220	3.9	3.9	3.9	3.9	33003	XANGONGO_220	220	1.8	2.1	2.2	2.2
14054	C_CABARA_400	400	28.1	27.2	31.0	31.2	33005	ONDJIVA 220	220	1.1	1.2	3.0	3.0
14071	ZENZO	400	-	-	16.5	16.5	33007	BAYNES_400	400	2.4	3.1	4.5	4.6
14074	CE_GAST70	220	3.0	3.0	3.8	3.9	33020	ONDJIVA_400	400	-	-	5.1	5.2
15004	CAPANDA_220	220	18.0	18.1	18.1	18.0	40010	DUNDO_220	220	1.5	1.5	1.5	1.5
15006	CAP_ELEV_220	220	18.5	18.6	18.6	18.5	40020	LUCAPA_220	220	1.8	1.8	1.8	1.8
15008	CAP_ELEV_400	400	19.0	19.0	20.1	20.2	40030	XA_MUTBA_400	400	3.8	3.9	3.9	3.9
15016	MALANJE 220	220	5.1	5.1	4.8	4.9	41019	SAURIMO_400	400	2.1	2.1	2.0	2.1
20025	KILEV_4_220	220	3.7	6.9	10.3	10.3	41020	SAURIMO_220	220	2.5	2.5	2.6	2.6
20034	LMAUM_3_220	220	2.8	3.8	4.4	4.4	41040	MUCONDA 220	220	1.4	1.4	1.4	1.4
20052	N_BIOP_1_220	220	4.0	6.9	9.7	9.8	42010	LUENA_220	220	1.4	1.4	1.4	1.4
	B.SUL_220	220	3.1	5.1	6.8	6.8	42010	LUAU_220	220	1.1	1.3	1.1	1.1
	KILEVA_GT	220	3.6	6.9	10.5	10.5	42030	CAZOMBO_220	220	0.8	0.8	0.8	0.8
2000/	NICEVA_GI	220	3.0	0.9	10.5	10.5	42040		220	0.U	0.0	0.0	0.8

 Table 7-26
 Three-Phase Short Circuit Fault Currents

7.7.15 Summary of the power transmission system development plan up to 2040

The results up to the previous section are compiled into the following project list. The power supply line relation for the transmission lines is shown separately. Here, the standard capacity of the transformer at the 400 kV substation is set to 450 MVA, 930 MVA, and the standard capacity of the transformer at the 220 kV substation is set to 60 MVA, 120 MVA, 240 MVA, and in principle, the development will be carried out in line with this lineup.

		Table	1-41	LISU OF 400 KV	Jubstati	ion i rojects	
Project#	Year of operation	Area	Voltage (kV)	Substation Name	Capacity (MVA)	Cost (MUS\$)	Remarks
	-	a a 1				< · · /	
1	2020	Cuanza Sul	400	Waco kungo	450	40.5	450 x 1, under construction(China)
2	2020	Huambo	400	Belem do Huambo	900	51.3	450 x 2, under construction(China)
3	2022	Luanda	400	Bita	900	51.3	450 x 2, under construction(Brazil)
4	2025	Cuanza Sul	400	Waco kungo	450	40.5	upgrade 450 x 1
5	2025	Luanda	400	Bita	450	40.5	upgrade 450 x 1
6	2025	Zaire	400	N'Ze to	450	40.5	upgrade 450 x 1
7	2025	Luanda	400	Viana	2,790	96.6	upgrade 930 x 3
8	2025	Bengo	400	Kapary	450	40.5	upgrade 450 x 1
9	2025	Huila	400	Lubango2	900	51.3	450 x 2, Pre-FS implemented*
10	2025	Huila	400	Capelongo	900	51.3	450 x 2
11	2025	Huila	400	Calukembe	120	32.6	60 x 2
12	2025	Benguera	400	Nova Biopio	900	51.3	450 x 2
13	2025	Southern	400	Cahama	900	51.3	450 x 2
14	2025	Eastern	400	Saurimo	900	51.3	450 x 2, under Pre-FS
15	2025	Lunda Norte	400	Xa-Muteba	360	38.3	180 x 2, under Pre-FS
16	2025	Huila	400	Quilengues	120	32.6	60 x 2
17	2025	Cuanza Sul	400	Gabela	900	51.3	450 x 2
18	2025	Luanda	400	Sambizanga	2,790	96.6	930 x 3
19	2025	Malanje	400	Lucala	900	51.3	450 x 2
20	2025	Chipindo	400	Chipindo	360	38.3	180 x 2
21	2030	Bengo	400	Kapary	450	40.5	upgrade 450 x 1
22	2030	Luanda	400	Catete	450	40.5	upgrade 450 x 1
23	2035	Cunene	400	Ondjiva	900	51.3	450 x 2, Pre-FS implemented*
24	2035	Luanda	400	Bita	450	40.5	upgrade 450 x 1
25	2035	Malanje	400	Lucala	450	40.5	upgrade 450 x 1
		Total			19,590	1,171.4	
		Total			19,590	1,171.4	

 Table 7-27
 List of 400 kV Substation Projects

Pre-FS implemented*:Candidate site were selected by USTDA and DBSA.

	-			St OI 220 R V Duk		= = = j = = = = (=)	
Destaut	Year	A	Makaa	C. Later day	C i	Cont	Develo
Project#	of	Area	Voltage	Substation	Capacity	Cost	Remarks
	operation		(kV)	Name	(MVA)	(MUS\$)	
1	2018	Benguela	220	Benguela Sul	240	24.5	120 x 2, under construction(China)
2	2020	Luanda	220	Bita	240	24.5	120 x 2, under construction(Brazil)
3	2020	Zaire	220	Tomboco	40	13.7	20 x 2
4	2020	Malanje	220	Capanda Elevadora	130	18.6	65 x 2, upgrade
5	2021	Luanda	220	Cacuaco	480	37.5	240 x 2, upgrade
6	2022	Luanda	220	Zango	360	31.0	120 x 3
7	2022	Malanje	220	Malanje 2	240	24.5	120 x 2
8	2022	Cuanza Sul	220	Waco Kungo	60	14.8	60 x 1
9	2022	Cuanza Sul	220	Quibala	120	18.1	60 x 2
10	2022	Benguela	220	Cubal	120	18.1	60 x 2
11	2022	Huíla	220	Lubango	240	24.5	120 x 2, Pre-FS implemented*
12	2022	Huíla	220	Matala	120	18.1	60 x 2, Pre-FS implemented*
13	2022	Huíla	220	Capelongo	60	14.8	60 x 1
14	2022	Cuando-Cubango	220	Cuchi	60	14.8	60 x 1
15	2022	Cuando-Cubango	220	Menangue	240	24.5	120 x 2
16	2022	Namibe	220	Namibe	240	24.5	120 x 2, Pre-FS implemented*
17	2022	Namibe	220	Tombwa	120	18.1	60 x 2, Pre-FS implemented*
18	2022	Lunda Norte	220	Lucapa	60	14.8	60 x 1
19	2022	Lunda Norte	220	Dundo	120	18.1	60 x 2, under Pre-FS
20	2022	Lunda Sur	220	Saurimo	120	18.1	60 x 2, under Pre-FS
21	2022	Uíge	220	Uíge	240	24.5	120 x 2, upgrade
22	2025	Luanda	220	Golfe	360	31.0	120 x 3
23	2025	Luanda	220	Chicara	480	37.5	240 x 2
24	2025	Bengo	220	Caxito	60	14.8	60 x 1
24	2025	Bengo	220	Maria Teresa	60	14.8	60 x 1
26	2025	Cuanza Sul	220	Porto Amboim	120	18.1	60 x 2
20	2025	Cuanza Sul	220	Cuacra	60	14.8	60 x 2
28	2025	Benguela	220	Catumbela	120	18.1	60 x 1
20	2025	Benguela	220	Bocoio	120	18.1	60 x 2
30	2025	Huambo	220	Ukuma	60	14.8	60x 1, Pre-FS implemented*
30	2025	Huambo	220	Catchiungo	120	14.8	60 x 2, Pre-FS implemented*
		Bié	220	Andulo			=
32	2025 2025		220		60	14.8 18.1	60 x 1
33		Huíla	220	Nova Lubango	120 60		60 x 2
34	2025	Huíla		Caluquembe		14.8	60 x 1
35	2025	Huíla	220	Quilengues	60	14.8	60 x 1
36	2025	Huíla	220	Tchamutete	120	18.1	60 x 2, Pre-FS implemented*
37	2025	Cunene	220	Ondjiva	120	18.1	60 x 2, Pre-FS implemented*
38	2025	Cunene	220	Cahama	60	14.8	60 x 1, Pre-FS implemented*
39	2025	Cunene	220	Xangongo	60	14.8	60 x 1, Pre-FS implemented*
40	2025	Moxico	220	Luena	240	24.5	120 x 2, under Pre-FS
41	2025	Lunda Norte	220	Xa-Muteba	120	18.1	60 x 2
42	2025	Luanda	220	Viana	600	44.0	300 x 2, upgrade
43	2025	Luanda	220	Camama	120	18.1	120 x 1, upgrade
44	2025	Luanda	220	Sambizanga	240	24.5	240 x 1, upgrade
45	2025	Kuanza Norte	220	N' Dalatando	80	15.9	40 x 2, upgrade
46	2027	Moxico	220	Cazombo	60	14.8	60 x 1
47	2027	Moxico	220	Luau	60	14.8	60 x 1
48	2027	Lunda Sur	220	Muconda	60	14.8	60 x 1
49	2027	Bié	220	Kuito	120	18.1	120 x 1, upgrade
50	2030	Luanda	220	Futungo de Belas	120	18.1	120 x 1, upgrade

 Table 7-28
 List of 220 kV Substation Projects (1)

Pre-FS implemented*:Candidate site were selected by USTDA and DBSA.

	Year						
Project#	of	Area	Voltage	Substation	Capacity	Cost	Remarks
110,000	operation		(kV)	Name	(MVA)	(MUS\$)	
51	2030	Uíge	220	Negage	180	21.3	60 x 3
52	2030	Cabinda	220	Cabinda	240	24.5	120x 2
53	2030	Cabinda	220	Cacongo	120	18.1	60 x 2
54	2030	Benguela	220	Alto Catumbela	120	18.1	60 x 2
55	2030	Benguela	220	Baria Farta	120	18.1	60 x 2
56	2030	Huambo	220	Bailundo	120	18.1	60 x 2
57	2030	Huíla	220	Chipindo	60	14.8	60 x 1
58	2031	Zaire	220	M'Banza Congo	180	21.3	60 x 3, upgrade
59	2032	Cune ne	220	Ondjiva	120	18.1	120 x 1, upgrade
60	2032	Lunda Sur	220	Saurimo	120	18.1	120 x 1, upgrade
61	2034	Luanda	220	Cacuaco	240	24.5	240 x 1, upgrade
62	2035	Luanda	220	PIV	480	37.5	240 x 2
63	2035	Kuanza Norte	220	Lucala	120	18.1	60 x 2
64	2035	Uíge	220	Sanza Pombo	120	18.1	60 x 2
65	2035	Bié	220	Camacupa	60	14.8	60 x 1
66	2035	Cuando-Cubango	220	Cuito Cuanavale	60	14.8	60 x 1
67	2035	Luanda	220	Cazenga	120	18.1	120 x 1, upgrade
68	2035	Bengo	220	Kapary	120	18.1	120 x 1, upgrade
69	2035	Benguela	220	Catumbela	240	24.5	120 x 2, upgrade
70	2036	Luanda	220	Sambizanga	240	24.5	240 x 1, upgrade
71	2036	Uíge	220	Maquela do Zombo	40	13.7	40 x 1, upgrade
72	2036	Huambo	220	Belém do Dango	240	24.5	240 x 1, upgrade
73	2036	Lunda Norte	220	Dundo	120	18.1	120 x1, upgrade
74	2037	Cuanza Sul	220	Gabela	60	14.8	60 x 1, upgrade
75	2038	Benguela	220	Cubal	240	24.5	120 x 2, upgrade
76	2040	Cuando-Cubango	220	Mavinga	60	14.8	60 x 1
77	2040	Malanje	220	Malanje 2	120	18.1	120 x 1, upgrade
78	2040	Huíla	220	Caluquembe	60	14.8	60 x 1, upgrade
		Total			11,810	772.4	

 Table 7-29
 List of 220 kV Substation Projects (2)

	Tuble 7 50 Elist of 400 KV Transmission Eline Trojects											
	Year					number	Power	Line				
Project#	of	Area	Voltage	Starting point	End point	of	Flow	Length	Cost	Remarks		
	operation		(kV)			circuit	(MVA)	(km)	(MUS\$)			
1	2020	Central	400	Lauca	Waco kungo	1	307	177	138.1	under construction(China)		
2	2020	Central	400	Waco kungo	Belem do Huambo	1	242	174	135.7	under construction(China)		
3	2020	Northern	400	Cambutas	Bita	1	580	172	134.2	under construction(Brazil)		
4	2022	Northern	400	Catete	Bita	2	504	54	52.9	under construction(Brazil)		
5	2025	Northern	400	Cambutas	Catete	1	791	123	95.9	Dualization		
6	2025	Northern	400	Catete	Viana	1	579	36	28.1	Dualization		
7	2025	Northern	400	Lauca	Capanda elev.	1	518	41	32.0	Dualization		
8	2025	Northern	400	Kapary	Sambizanga	2	1130	45	44.1	For New Substation		
9	2025	Northern	400	Lauca	Catete	2	868	190	186.2	Changing Connection Plan		
10	2025	Central	400	Lauca	Waco kungo	1	307	177	138.1	Dualization		
11	2025	Central	400	Waco kungo	Belem do Huambo	1	242	174	135.7	Dualization		
12	2025	Central	400	Cambutas	Gabela	2	484	131	128.4	Pre-FS implemented*		
13	2025	Central	400	Gabela	Benga	2	848	25	24.5	Pre-FS implemented*		
14	2025	Central	400	Benga	Nova Biopio	2	550	200	196.0	Pre-FS implemented*		
15	2025	Southern	400	Belem do Huambo	Caluque mbe	2	606	175	171.5	Pre-FS implemented*		
16	2025	Southern	400	Caluque mbe	Lubango2	2	666	168	164.6	Pre-FS implemented*		
17	2025	Southern	400	Belem do Huambo	Chipindo	2	264	114	111.7			
18	2025	Southern	400	Chipindo	Capelongo	2	190	109	106.8			
19	2025	Southern	400	Nova Biopio	Quilengues	2	840	117	114.7	Pre-FS implemented*		
20	2025	Southern	400	Quilengues	Lubango2	2	772	143	140.1	Pre-FS implemented*		
21	2025	Southern	400	Lubango2	Cahama	2	450	190	186.2	Pre-FS implemented*		
22	2025	Eastern	400	Capanda_elev	Xa-Muteba	2	590	266	260.7			
23	2025	Eastern	400	Xa-Muteba	Saurimo	2	510	335	328.3	under Pre-FS		
24	2027	Southern	400	Capelongo	Ondjiva	2	292	312	305.8			
25	2027	Southern	400	Cahama	Ondjiva	2	442	175	171.5			
26	2027	Southern	400	Cahama	Ruacana	2	409	125	122.5	International Interconnection		
				Total				3,948	3,654.2			

 Table 7-30
 List of 400 kV Transmission Line Projects

Pre-FS implemented*:Candidate route were selected by USTDA and DBSA.

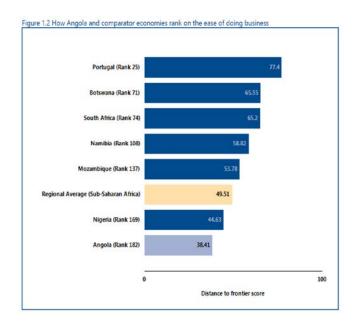
2 2020 Southern 220 Lubango2 Namibe 2 360 162 72.9 Pre-FS implemented: 3 2020 Southern 220 Namibe Tombwa 2 120 97 43.7 Pre-FS implemented: 4 2020 Eastern 220 Saurimo Lucapa 2 300 157 70.7 Pre-FS implemented: 5 2020 Eastern 220 Lucapa Dundo 2 240 135 60.8 Pre-FS implemented: 6 2022 Northern 220 Bita Camama 2 840 21 9.5 7 2022 Northern 220 Catete Zango 2 360 40 18.0 8 2022 Northern 220 Gabela Alto Chingo 1 300 81 29.2 Dualization 10 2022 Central 220 Quibala Waco Kungo 2 120 92 41.4 11 2022 Central 220 Lomaum C			10	able /-	<u>31 220KVI</u>	ASU OF TTAIISH	1155101		1 10 900	00	
operation (kV)		Year					number	Required	Line		
1 2000 Southerm 220 Lubango2 Lubango2 Samibe 2 360 162 72.9 Pre-FS implemented 3 2020 Southerm 220 Namibe Tombwa 2 120 97 43.7 Pre-FS implemented 4 2020 Eastern 220 Saurino Lacapa 2 300 157 70.7 Pre-FS implemented 5 2020 Northern 220 Cateta Zango 2 300 400 18.0 7 2022 Northern 220 Catete Zango 2 300 40 18.0 9.5 9 2022 Central 220 Quobal Wace Kungo 2 120 9.2 41.4 14.4 10 2022 Central 220 Lobango Matala 1 41 5 1.8 upgarade 11 2022 Southern 220 Caclois Matala 1 <td< td=""><td>Project#</td><td>of</td><td>Area</td><td>Voltage</td><td>Starting point</td><td>End point</td><td>of</td><td>Capcity</td><td>Length</td><td>Cost</td><td>Remarks</td></td<>	Project#	of	Area	Voltage	Starting point	End point	of	Capcity	Length	Cost	Remarks
2 2020 Southern 220 Lubango2 Namibe 2 360 162 72.9 Pre-FS implemented 4 2020 Southern 220 Namibe 120 97 43.7 Pre-FS implemented 5 2005 Eastern 220 Southern 220 Southern 220 Southern 230 157 70.7 Pre-FS implemented 6 2022 Northern 220 Catete Zango 2 360 400 18.0 8 2022 Central 220 Gabela Alto Chingo 1 300 81 29.2 Dualization 10 2022 Central 220 Gabela Alto Chingo 2 300 81 29.2 Dualization 11 2022 Central 220 Gabela Alto Chingo 2 300 91 41.0 12 2022 Southern 220 Matala 1 41 5		operation		(kV)			circuit	(MVA)	(km)	(MUS\$)	
3 2020 Number 201 Number Tombya 2 120 97. 43.7 Pre-FS implemented 4 2020 Eastern 220 Saurino Lucapa 2 300 157 70.7 Pre-FS implemented 5 2020 Rottern 220 Bita Camana 2 840 21 9.5 70.7 Pre-FS implemented 7 2022 Northern 220 Catete Zango 2 300 100 49.5 9 2022 Central 220 Gabela Alto Chingo 1 300 81 29.2 Daulization 10 2022 Central 220 Lomanan Cubal 2 360 2 0.9 1 12 2022 Southern 220 Capelongo Catha 1 41.0 5 1.8 upgarade 14 2022 Southern 220 Matala 1 41.0 5	1	2020	Southern	220	Lubango2	Lubango	2	360	30	13.5	Pre-FS implemented*
4 2000 Eastern 220 Surrino Lucapa 2 300 157 70.7 Pre-FS implemented 5 2020 Northern 201 Bita Canama 2 240 135 60.8 Pre-FS implemented 6 2022 Northern 220 Catete Zango 2 360 410 49.5 7 2022 Northern 220 Candad elev. Maranje 2 360 410 49.5 9 2022 Central 220 Gabela Alto Chingo 1 300 81 2.2 Dualization 10 2022 Central 220 Lobango Matala 2 120 168 7.5 Pre-FS implemented 13 2022 Southern 220 Lobango Matala 1 41 5 1.8 upgarade 14 2022 Southern 220 Cachi Menongue 360 7 3.2	2	2020	Southern	220	Lubango2	Namibe	2	360	162	72.9	Pre-FS implemented*
5 2020 Eastern 220 Lucapa Dundo 2 240 135 60.8 Pre-FS implemented 6 2022 Northern 220 Bita Camaran 2 840 21 9.5 7 2022 Northern 220 Capanda elev. Maranje 2 360 110 49.5 9 2022 Central 220 Quibala Wace Kungo 2 120 9.2 41.4 11 2022 Central 220 Quibala Wace Kungo 2 120 168 75.6 Pre-FS implemented' 12 2022 Southern 220 Lunanu Cubal 2 360 7.4 1.0 upgarade 13 2022 Southern 220 Cuchi Menongue 2 360 7.4 1.0 upgarade 14 2022 Southern 220 Cuchi Menongue 2 360 7.4 3.2	3	2020	Southern	220	Namibe	Tombwa	2	120	97	43.7	Pre-FS implemented*
6 2022 Northern 220 Bita Camana 2 840 21 9.5 7 2022 Northern 220 Catete Zango 2 360 40 18.0 8 2022 Central 220 Gabela Alto Chingo 1 300 81 29.2 Dualization 10 2022 Central 220 Gabela Alto Chingo 2 120 92 41.4 11 2022 Central 220 Lanaam Cabela 2 160 7.5 Pre-Fs inplemented 13 2022 Southern 220 Matala HPS Matala 1 41 5 1.8 upgarade 14 2022 Southern 220 Matala 1 41.0 7 3.2 16 2025 Southern 220 Sambizanga Golt 2 360 7 3.2 17 2025 Northern 220 </td <td>4</td> <td>2020</td> <td>Eastern</td> <td>220</td> <td>Saurimo</td> <td>Lucapa</td> <td>2</td> <td>300</td> <td>157</td> <td>70.7</td> <td>Pre-FS implemented*</td>	4	2020	Eastern	220	Saurimo	Lucapa	2	300	157	70.7	Pre-FS implemented*
7 2022 Northern 220 Catete Zango 2 360 410 18.0 8 2022 Central 220 Capanda elv. Maranje 2 360 110 49.5 10 2022 Central 220 Quibala Waco Kungo 2 120 92 41.4 11 2022 Central 220 Lubango Matala 2 120 92 41.4 12 2022 Southern 220 Lubango Matala 1 41 5 1.8 uggrade 14 2022 Southern 220 Cuchi Menongue 2 360 94 42.3 16 2025 Northern 220 Sambizanga Goffe 2 360 7 3.2 17 2025 Northern 220 Kapary Caxito 2 60 26 11.7 2025 Northern 220 Kapary	5	2020	Eastern	220	Lucapa	Dundo	2	240	135	60.8	Pre-FS implemented*
8 2022 Northern 220 Capanda elev. Maranje 2 360 110 49.5 9 2022 Central 220 Gabela Alto Chingo 1 300 81 29.2 Dualization 10 2022 Central 220 Lomaum Cubal 2 360 2 0.9 112 2022 Southern 220 Lomaum Cubal 2 360 91 41.4 13 2022 Southern 220 Matala IIPS Matala 1 41 5 1.8 upgarade 15 2022 Southern 220 Capelongo Cuchi 2 420 91 41.0 42.3 16 2025 Northern 220 Sambizanga Golfe 2 360 7 3.2 17 2025 Northern 220 Sambizanga Chical 2 480 7 3.2 202025 Nort	6	2022	Northern	220	Bita	Camama	2	840	21	9.5	
9 2022 Central 220 Gabela Alto Chingo 1 300 81 29.2 Dualization 10 2022 Central 220 Quibala Waco Kungo 2 120 92 41.4 11 2022 Central 220 Lubango Matala 2 120 108 75.6 Pre-FS implemented' 13 2022 Southern 220 Capelongo Cuchi 4 41 5 1.8 upgarade 14 2022 Southern 220 Capelongo Cuchi Menongue 2 360 94 42.3 16 2025 Northern 220 Kapary Castio 2 00 2.6 11.7 18 2055 Northern 220 Sambizanga Chicala 2 480 7 3.2 20 2025 Central 220 Sambizanga Chicala 2 480 7	7	2022	Northern	220	Catete	Zango	2	360	40	18.0	
9 2022 Central 220 Gabela Alto Chingo 1 300 81 29.2 Dualization 10 2022 Central 220 Quibala Wace Kungo 2 120 922 41.4 11 2022 Central 220 Lubango Matala 2 120 128 75.6 Pre-FS inplemented' 13 2022 Southern 220 Capelongo Cuchi 2 420 91 41.0 14 2022 Southern 220 Capelongo Cuchi 2 420 91 41.0 15 2022 Southern 220 Capelongo Cuchi 2 420 91 41.0 2 420 5 3.2 2 420 5 3.3 For Substation inserte 16 2025 Northern 220 Alto Chingo Cucara	8	2022	Northern	220	Capanda elev.	Maranje	2	360	110	49.5	
11 2022 Central 220 Lomano Matala 2 360 2 0.9 12 2022 Southern 220 Lubango Matala 1 41 5 1.8 upgarade 14 2022 Southern 220 Capelongo Cuchi 2 420 91 41.0 15 2022 Southern 220 Cuchi Menongue 2 360 74 3.2 16 2025 Northern 220 Sambizanga Golfé 2 360 74 3.2 17 2025 Northern 220 Kapary Caxito 2 60 2 1.1 7 3.2 21 2025 Northern 220 Mbraza Congo Tomboco 2 200 5 2.3 For Substation inserte 21 2025 Northern 220 Alto Chingo Cucra 2 60 51 1.3 2.3	9	2022	Central	220	Gabela		1	300	81	29.2	Dualization
12 2022 Southern 220 Hubbar Matala 1 1 4 5 1.8 Pre-FS implemented' upgarade 13 2022 Southern 220 Matala HPS Matala 1 4 5 1.8 upgarade 14 2022 Southern 220 Cachi Menongue 2 420 91 41.0 15 2022 Southern 220 Scambizanga Gole 2 360 94 42.3 16 2025 Northern 220 Kapary Cakito 2 60 26 11.7 18 2025 Northern 220 M*Daraga Chicala 2 480 7 3.2 21 2025 Northern 220 Sambizanga Chicala 2 480 7 3.2 21 2025 Northern 220 Catete Matria Teresa 2 60 51 2.3 For Substation inserte	10	2022	Central	220	Quibala	Waco Kungo	2	120	92	41.4	
13 2022 Southern 220 Matala HPS Matala 1 41 5 1.8 upgarade 14 2022 Southern 220 Capelongo Cuchi 2 420 91 41.0 15 2022 Southern 220 Cuchi Menongue 2 360 94 42.3 16 2025 Northern 220 Sambizanga Golfe 2 360 7 3.2 17 2025 Northern 220 Kapary Casito 2 60 26 1.7 18 2025 Northern 220 Monza Congo Tomboco 2 220 5 2.3 For Substation inserte 20 2025 Northern 220 Cattete Maria Teresa 2 60 51 23.0 21 2025 Central 220 Alto Chingo Port Amboim 2 120 60 27.0 7.0 24	11	2022	Central	220	Lomaum	Cubal	2	360	2	0.9	
14 2022 Southerm 220 Capelongo Cuchi 2 420 91 41.0 10 15 2022 Southerm 220 Cuchi Menongue 2 360 94 42.3 16 2025 Northerm 220 Sambizanga Golfe 2 360 7 3.2 17 2025 Northerm 220 Kapary Caxito 2 60 26 11.7 18 2025 Northerm 220 N'Zeto Tomboco 2 220 5 2.3 For Substation inserte 20 2025 Northerm 220 Cattete Maria Teresa 2 60 25 11.3 21 2025 Central 220 Alto Chingo Port Amboim 2 120 60 27.0 11.3 22 2025 Central 220 Quileva Nova Biopio 1 550 18 6.5 Dualization	12	2022	Southe rn	220	Lubango	Matala	2	120	168	75.6	Pre-FS implemented*
14 2022 Southern 220 Capelongo Cuchi 2 420 91 41.0 15 2022 Southern 220 Cuchi Menongue 2 360 94 42.3 16 2025 Northern 220 Sambizanga Golie 2 360 7 3.2 17 2025 Northern 220 Kapary Caxito 2 60 26 11.7 18 2025 Northern 220 Northern 220 Northern 220 5 2.3 For Substation inserte 20 2025 Northern 220 Mbanz Congo Tomboco 2 200 5 2.3 For Substation inserte 21 2025 Central 220 Alto Chingo Port Amboim 2 120 60 27.0 22 2025 Central 220 Quile va Nova Biopio 1 550 18 6.5 Dualization <td>13</td> <td>2022</td> <td></td> <td></td> <td>9</td> <td>Matala</td> <td>1</td> <td>41</td> <td></td> <td></td> <td></td>	13	2022			9	Matala	1	41			
15 2022 Southern 220 Cuchi Menongue 2 360 94 42.3 16 2025 Northern 220 Sambizanga Golfe 2 360 7 3.2 17 2025 Northern 220 Kapary Caxito 2 60 26 11.7 18 2025 Northern 220 N"Zeto Tomboco 2 220 5 2.3 For Substation inserte 20 2025 Northern 220 Cattet Maia Teresa 2 60 51 2.30 21 2025 Central 220 Alto Chingo Cuarca 2 60 25 11.3 23 2025 Central 220 Alto Chingo Port Amboim 2 120 60 27.0 24 2025 Central 220 Quile va Catambela 2 240 8 3.6 27 2025 Central	14	2022		220	Capelongo	Cuchi	2	420	91	41.0	
16 2025 Northern 220 Sambizanga Golfe 2 360 7 3.2 17 2025 Northern 220 Kapary Caxito 2 60 26 11.7 18 2025 Northern 220 M'banza Congo Tomboco 2 220 5 2.3 For Substation inserte 19 2025 Northern 220 Sambizanga Chicala 2 420 5 2.3 For Substation inserte 20 2025 Northern 220 Sambizanga Chicala 2 420 5 2.3 For Substation inserte 21 2025 Central 220 Alto Chingo Cuarara 2 60 25 11.3 22 2025 Central 220 Quileva Catumbela 2 240 8 3.6 25 2025 Central 220 Nova Biopio Bocoio 2 120 5 2.3 <td< td=""><td>15</td><td>2022</td><td></td><td></td><td>. 0</td><td></td><td>2</td><td>360</td><td>94</td><td></td><td></td></td<>	15	2022			. 0		2	360	94		
17 2025 Northern 220 Kapary Caxito 2 60 26 11.7 18 2025 Northern 220 NZeto Tomboco 2 220 5 2.3 For Substation inserte 19 2025 Northern 220 S 2.3 For Substation inserte 20 2025 Northern 220 S 2.3 For Substation inserte 21 2025 Northern 220 Catete Maria Teresa 2 60 51 23.0 22 2025 Central 220 Alto Chingo Port Amboin 2 120 60 27.0 - 24 2025 Central 220 Quileva Catumbela 2 240 8 3.6 - 26 2025 Central 220 Nova Biopio Becoio 2 120 5 2.3 For Substation inserte 27 2025 Central 220 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></td<>						-					
18 2025 Northern 220 NTZeto Tomboco 2 220 5 2.3 For Substation inserte 19 2025 Northern 220 Mbanza Congo Tomboco 2 220 5 2.3 For Substation inserte 20 2025 Northern 220 Catete Maria Teresa 2 60 51 23.0 22 2025 Central 220 Alto Chingo Cuaera 2 60 25 11.3 23 2025 Central 220 Quileva Nova Biopio 1 550 18 6.5 Dualization 24 2025 Central 220 Quileva Catumbela 2 240 8 3.6 26 2025 Central 220 Nova Biopio Bocoio 2 120 5 2.3 For Substation inserte 27 2025 Central 220 Belem do Huambo Ukuma 60 66 29.7<											
19 2025 Northern 220 M'banza Congo Tomboco 2 220 5 2.3 For Substation inserte 20 2025 Northern 220 Sambizanga Chicala 2 480 7 3.2 21 2025 Northern 220 Alto Chingo Cuacra 2 60 25 11.3 23 2025 Central 220 Alto Chingo Port Amboim 2 120 60 27.0 24 2025 Central 220 Quileva Nova Biopio 1 550 18 6.5 Dualization 25 2025 Central 220 Quileva Catumbela 2 120 5 2.3 For Substattion inserte 26 2025 Central 220 Lomaum Bocoio 2 120 5 2.3 For Substattion inserte 29 2025 Central 220 Belem do Huambo Ukumaa 2 60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>For Substattion inserted</td></t<>											For Substattion inserted
20 2025 Northern 220 Sambizanga Chicala 2 480 7 3.2 21 2025 Northern 220 Catete Maria Teresa 2 60 51 23.0 22 2025 Central 220 Alto Chingo Port Amboin 2 120 60 25 11.3 23 2025 Central 220 Alto Chingo Port Amboin 2 120 60 25 11.3 24 2025 Central 220 Quileva Nova Biopio 1 550 18 6.5 Dualization 25 2025 Central 220 Quineva Catumbela 2 120 5 2.3 For Substation inserte 27 2025 Central 220 Belem do Huambo Catchiungo 2 720 76 34.2 Strengthen 30 2025 Central 220 Kuito Andulo 2 60 110	-										
21 2025 Northern 220 Catele Maria Teresa 2 60 51 23.0 22 2025 Central 220 Alto Chingo Cuacra 2 60 25 11.3 23 2025 Central 220 Alto Chingo Port Amboim 2 120 60 27.0 24 2025 Central 220 Quileva Nova Biopio 1 550 18 6.5 Dualization 25 2025 Central 220 Quileva Catumbela 2 240 8 3.6 26 2025 Central 220 Nova Biopio Bocoio 2 120 5 2.3 For Substation inserte 29 2025 Central 220 Belem do Huambo Ukuma 2 480 85 38.3 Strengthen 31 2025 Central 220 Catchiungo Kuito 2 480 85 38.3 Strength					0						T of Bussiellon Inserted
22 2025 Central 220 Alto Chingo Cuacra 2 60 25 11.3 23 2025 Central 220 Alto Chingo Port Amboim 2 120 60 27.0 24 2025 Central 220 Quileva Nova Biopio 1 550 18 6.5 Dualization 25 2025 Central 220 Quileva Catumbela 2 240 8 3.6 26 2025 Central 220 Nova Biopio Bocoio 2 120 5 2.3 For Substation inserte 28 2025 Central 220 Belem do Huambo Ukuma 2 60 66 29.7 29 2025 Central 220 Catchiungo Kuito Andulo 2 480 85 38.3 Strengthen 31 2025 Central 220 Catchiungo Kuito Andulo 2 100 97 <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>					0		-				
23 2025 Central 220 Alto Chingo Port Amboim 2 120 60 27.0 24 2025 Central 220 Quileva Nova Biopio 1 550 18 6.5 Dualization 25 2025 Central 220 Quileva Catumbela 2 240 8 3.6 26 2025 Central 220 Nova Biopio Bocoio 2 120 5 2.3 For Substation inserte 28 2025 Central 220 Belem do Huambo Ukuma 2 60 66 29.7 29 2025 Central 220 Catchiungo Kuito 2 480 85 38.3 Strengthen 31 2025 Central 220 Cahama Xangongo 2 180 97 43.7 Pre-FS implemented' 33 2025 Southern 220 Cahama Xangongo 1 120 97 <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-									
24 2025 Central 220 Quileva Nova Biopio 1 550 18 6.5 Dualization 25 2025 Central 220 Quileva Catumbela 2 240 8 3.6 26 2025 Central 220 Nova Biopio Bocoio 2 120 5 2.3 For Substattion inserte 27 2025 Central 220 Belem do Huambo Ukuma 2 60 66 29.7 29 2025 Central 220 Belem do Huambo Catchiungo 2 720 76 34.2 Strengthen 30 2025 Central 220 Catchiungo Kuito 2 480 85 38.3 Strengthen 31 2025 Conthern 220 Cahama Xangongo 1 120 97 34.9 Pre-FS implemented 33 2025 Southern 220 Capelongo Tchamute te 2 12					0						
25 2025 Central 220 Quileva Catumbela 2 240 8 3.6 26 2025 Central 220 Nova Biopio Bocoio 2 120 5 2.3 For Substattion inserte 27 2025 Central 220 Lomaum Bocoio 2 120 5 2.3 For Substattion inserte 28 2025 Central 220 Belem do Huambo Ukuma 2 60 66 29.7 29 2025 Central 220 Catchiungo Kuito 2 480 85 38.3 Strengthen 30 2025 Central 220 Catchiungo Kuito Andulo 2 60 110 49.5 32 2025 Southern 220 Cahama Xangongo 1 120 97 34.9 Pre-FS implemented' 34 2025 Southern 220 Capelongo Tchamutete 2 120					8						Dualization
26 2025 Central 220 Nova Biopio Bocoio 2 120 5 2.3 For Substattion inserte 27 2025 Central 220 Lomaum Bocoio 2 120 5 2.3 For Substattion inserte 28 2025 Central 220 Belem do Huambo Ukuma 2 60 66 29.7 29 2025 Central 220 Belem do Huambo Catchiungo 2 720 76 34.2 Strengthen 30 2025 Central 220 Catchiungo Kuito 2 480 85 38.3 Strengthen 31 2025 Central 220 Cathama Xangongo 1 120 97 34.9 Pre-FS implemented' 33 2025 Southern 220 Capelongo Tchamutete 2 120 98 44.1 35 2027 Eastern 220 Saurimo Luena 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>Dualization</td></td<>							-				Dualization
27 2025 Central 220 Lomaum Bocoio 2 120 5 2.3 For Substattion inserte 28 2025 Central 220 Belem do Huambo Ukuma 2 60 66 29.7 29 2025 Central 220 Belem do Huambo Catchiungo 2 7.0 7.6 34.2 Strengthen 30 2025 Central 220 Catchiungo Kuito 2 480 85 38.3 Strengthen 31 2025 Central 220 Kuito Andulo 2 60 110 49.5 32 2025 Southern 220 Cahama Xangongo 1 120 97 34.9 Pre-FS implemented ¹ 34 2025 Southern 220 Capelongo Tchamutete 2 120 98 44.1 35 2027 Eastern 220 Saurimo Muconda 2 180 187 <											For Substattion inserted
28 2025 Central 220 Belem do Huambo Ukuma 2 60 66 29.7 29 2025 Central 220 Belem do Huambo Catchiungo 2 720 76 34.2 Strengthen 30 2025 Central 220 Catchiungo Kuito 2 480 85 38.3 Strengthen 31 2025 Central 220 Kuito Andulo 2 60 110 49.5 32 2025 Southern 220 Cahama Xangongo 1 120 97 43.7 Pre-FS implemented' 34 2025 Southern 220 Ondjiva Xangongo 1 120 97 34.9 Pre-FS implemented' 35 2025 Eastern 220 Capelongo Tchamutete 2 120 98 44.1 36 2027 Eastern 220 Saurimo Lueau 2 120 115 5					-						
29 2025 Central 220 Belem do Huambo Catchiungo 2 720 76 34.2 Strengthen 30 2025 Central 220 Catchiungo Kuito 2 480 85 38.3 Strengthen 31 2025 Central 220 Kuito Andulo 2 60 110 49.5 32 2025 Southern 220 Cahama Xangongo 2 180 97 43.7 Pre-FS implemented: 33 2025 Southern 220 Ondjiva Xangongo 1 120 97 34.9 Pre-FS implemented: 34 2025 Southern 220 Capelongo Tchamutete 2 120 98 44.1 35 2027 Eastern 220 Saurimo Muconda 2 180 187 84.2 37 2027 Eastern 220 Muconda Luau 2 120 115 51.8<											T of Bubstitution Inserted
302025Central220CatchiungoKuito24808538.3Strengthen312025Central220KuitoAndulo26011049.5100322025Southern220CahamaXangongo21809743.7Pre-FS implemented'332025Southern220OndjivaXangongo11209734.9Pre-FS implemented'342025Southern220CapelongoTchamutete21209844.1100352025Eastern220SaurimoLuena2240265119.3Pre-FS implemented'362027Eastern220SaurimoMuconda218018784.2100382027Eastern220MucondaLuau212011551.8100382027Eastern220CubalAlto Cazombo260264118.8100392030Central220CatchiungoBaia Farta21203013.5100412030Northern220Benguela SulBaia Farta21203013.5100422030Northern220VianaPIV248073.210014.5442035Northern220VianaPIV248073.2100<											Strengthen
31 2025 Central 220 Kuito Andulo 2 60 110 49.5 Constrained 32 2025 Southern 220 Cahama Xangongo 2 180 97 43.7 Pre-FS implemented 33 2025 Southern 220 Ondjiva Xangongo 1 120 97 34.9 Pre-FS implemented 34 2025 Southern 220 Capelongo Tchamutete 2 120 98 44.1 35 2025 Eastern 220 Saurimo Luena 2 240 265 119.3 Pre-FS implemented 36 2027 Eastern 220 Saurimo Muconda 2 180 187 84.2 37 2027 Eastern 220 Muconda Luau 2 120 115 51.8 38 2027 Eastern 220 Cubal Alto Catumbela 2 120 47 21.2<											
32 2025 Southern 220 Cahama Xangongo 2 180 97 43.7 Pre-FS implemented' 33 2025 Southern 220 Ondjiva Xangongo 1 120 97 34.9 Pre-FS implemented' 34 2025 Southern 220 Capelongo Tchamutete 2 120 98 44.1 35 2025 Eastern 220 Saurimo Luena 2 240 265 119.3 Pre-FS implemented' 36 2027 Eastern 220 Saurimo Muconda 2 180 187 84.2 37 2027 Eastern 220 Muconda Luau 2 120 115 51.8 38 2027 Eastern 220 Luau Cazombo 2 60 264 118.8 39 2030 Central 220 Cubal Alto Catumbela 2 120 47 21.2		-									Strengthen
33 2025 Southern 220 Ondjiva Xangongo 1 120 97 34.9 Pre-FS implemented 34 2025 Southern 220 Capelongo Tchamutete 2 120 98 44.1 35 2025 Eastern 220 Saurimo Luena 2 240 265 119.3 Pre-FS implemented 36 2027 Eastern 220 Saurimo Muconda 2 180 187 84.2 37 2027 Eastern 220 Muconda Luau 2 120 115 51.8 38 2027 Eastern 220 Luau Cazombo 2 60 264 118.8 39 2030 Central 220 Cubal Alto Catumbela 2 120 47 21.2 40 2030 Central 220 Benguela Sul Baia Farta 2 120 30 13.5 42 2											Pre-FS implemented*
34 2025 Southern 220 Capelongo Tchamutete 2 120 98 44.1 35 2025 Eastern 220 Saurimo Luena 2 240 265 119.3 Pre-FS implemented' 36 2027 Eastern 220 Saurimo Muconda 2 180 187 84.2 37 2027 Eastern 220 Muconda Luau 2 120 115 51.8 38 2027 Eastern 220 Luau Cazombo 2 60 264 118.8 39 2030 Central 220 Cubal Alto Catumbela 2 120 47 21.2 40 2030 Central 220 Catchiungo Baia Farta 2 120 30 13.5 41 2030 Central 220 Uige Negage 2 620 5 2.3 For Substation inserte 43 2030 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 0</td> <td></td> <td></td> <td></td> <td></td> <td></td>						0 0					
35 2025 Eastern 220 Saurino Luena 2 240 265 119.3 Pre-FS implemented* 36 2027 Eastern 220 Saurino Muconda 2 180 187 84.2 37 2027 Eastern 220 Muconda Luau 2 120 115 51.8 38 2027 Eastern 220 Luau Cazombo 2 60 264 118.8 39 2030 Central 220 Cubal Alto Catumbela 2 120 47 21.2 40 2030 Central 220 Catchiungo Baia Farta 2 120 46 29.7 41 2030 Central 220 Uige Negage 2 620 5 2.3 For Substation inserte 43 2030 Northern 220 Uige Negage 2 620 5 2.3 For Substation inserte <						00	-				The TS implemented
36 2027 Eastern 220 Saurimo Muconda 2 180 187 84.2 37 2027 Eastern 220 Muconda Luau 2 120 115 51.8 38 2027 Eastern 220 Luau Cazombo 2 60 264 118.8 39 2030 Central 220 Cubal Alto Catumbela 2 120 47 21.2 40 2030 Central 220 Catchiungo Baia Farta 2 120 66 29.7 41 2030 Central 220 Benguela Sul Baia Farta 2 120 30 13.5 42 2030 Northern 220 Uige Negage 2 620 5 2.3 For Substation inserte 43 2030 Northern 220 Pambos de Sonhe Negage 2 620 5 2.3 For Substation inserte 44					1 0						Pre-FS implemented*
37 2027 Eastern 220 Muconda Luau 2 120 115 51.8 38 2027 Eastern 220 Luau Cazombo 2 60 264 118.8 39 2030 Central 220 Cubal Alto Catumbela 2 120 47 21.2 40 2030 Central 220 Catchiungo Bailundo 2 120 47 21.2 41 2030 Central 220 Benguela Sul Baia Farta 2 120 30 13.5 42 2030 Northern 220 Uige Negage 2 620 5 2.3 For Substation inserte 43 2030 Northern 220 Pambos de Sonhe Negage 2 620 5 2.3 For Substation inserte 44 2035 Northern 220 Viana PIV 2 480 7 3.2 45 2035											1.0 15 inpenendu
38 2027 Eastern 220 Luau Cazombo 2 60 264 118.8 39 2030 Central 220 Cubal Alto Catumbela 2 120 47 21.2 40 2030 Central 220 Catchiungo Bailundo 2 120 47 21.2 41 2030 Central 220 Catchiungo Baia Farta 2 120 66 29.7 41 2030 Central 220 Benguela Sul Baia Farta 2 120 30 13.5 42 2030 Northern 220 Uige Negage 2 620 5 2.3 For Substation inserte 43 2030 Northern 220 Pambos de Sonhe Negage 2 620 5 2.3 For Substation inserte 44 2035 Northern 220 Viana PIV 2 480 7 3.2 45											
39 2030 Central 220 Cubal Alto Catumbela 2 120 47 21.2 40 2030 Central 220 Catchiungo Bailundo 2 120 66 29.7 41 2030 Central 220 Benguela Sul Baia Farta 2 120 30 13.5 42 2030 Northern 220 Uige Negage 2 620 5 2.3 For Substation inserte 43 2030 Northern 220 Pambos de Sonhe Negage 2 620 5 2.3 For Substation inserte 44 2035 Northern 220 Viana PIV 2 480 7 3.2 45 2035 Northern 220 Negage Sanza Pombo 2 120 109 49.1 46 2035 Central 220 Kuito Camacupa 2 60 145 65.3 47											
40 2030 Central 220 Catchiungo Bailundo 2 120 66 29.7 41 2030 Central 220 Benguela Sul Baia Farta 2 120 30 13.5 42 2030 Northern 220 Uige Negage 2 620 5 2.3 For Substattion inserte 43 2030 Northern 220 Pambos de Sonhe Negage 2 620 5 2.3 For Substattion inserte 44 2035 Northern 220 Viana PIV 2 480 7 3.2 45 2035 Northern 220 Negage Sanza Pombo 2 120 109 49.1 46 2035 Central 220 Kuito Camacupa 2 60 145 65.3 47 2035 Southern 220 Menongue Cuito Cuanavale 2 120 189 85.1											
41 2030 Central 220 Benguela Sul Baia Farta 2 120 30 13.5 42 2030 Northern 220 Uige Negage 2 620 5 2.3 For Substattion inserte 43 2030 Northern 220 Pambos de Sonhe Negage 2 620 5 2.3 For Substattion inserte 44 2035 Northern 220 Viana PIV 2 480 7 3.2 45 2035 Northern 220 Negage Sanza Pombo 2 120 109 49.1 46 2035 Central 220 Kuito Camacupa 2 60 145 65.3 47 2035 Southern 220 Menongue Cuito Cuanavale 2 120 189 85.1											
42 2030 Northern 220 Uige Negage 2 620 5 2.3 For Substattion inserte 43 2030 Northern 220 Pambos de Sonhe Negage 2 620 5 2.3 For Substattion inserte 44 2035 Northern 220 Viana PIV 2 480 7 3.2 45 2035 Northern 220 Negage Sanza Pombo 2 120 109 49.1 46 2035 Central 220 Kuito Camacupa 2 60 145 65.3 47 2035 Southern 220 Menongue Cuito Cuanavale 2 120 189 85.1					0						
43 2030 Northern 220 Pambos de Sonhe Negage 2 620 5 2.3 For Substattion inserte 44 2035 Northern 220 Viana PIV 2 480 7 3.2 45 2035 Northern 220 Negage Sanza Pombo 2 109 49.1 46 2035 Central 220 Kuito Camacupa 2 60 145 65.3 47 2035 Southern 220 Menongue Cuito Cuanavale 2 120 189 85.1					0						For Substattion inserted
44 2035 Northern 220 Viana PIV 2 480 7 3.2 45 2035 Northern 220 Negage Sanza Pombo 2 120 109 49.1 46 2035 Central 220 Kuito Camacupa 2 60 145 65.3 47 2035 Southern 220 Menongue Cuito Cuanavale 2 120 189 85.1					9	00					
45 2035 Northern 220 Negage Sanza Pombo 2 120 109 49.1 46 2035 Central 220 Kuito Camacupa 2 60 145 65.3 47 2035 Southern 220 Menongue Cuito Cuanavale 2 120 189 85.1						00					i or substation inserted
46 2035 Central 220 Kuito Camacupa 2 60 145 65.3 47 2035 Southern 220 Menongue Cuito Cuanavale 2 120 189 85.1											
47 2035 Southern 220 Menongue Cuito Cuanavale 2 120 189 85.1	-										
+0 2000 Southern 220 Curto Cuanavale mavinga 2 00 170 79.2					0						
Total 3,746 1,667.6	40	2055	soumern	220		mavinga	2	00			

 Table 7-31
 220 kV List of Transmission Line Projects

Pre-FS implemented*:Candidate route were selected by USTDA and DBSA.

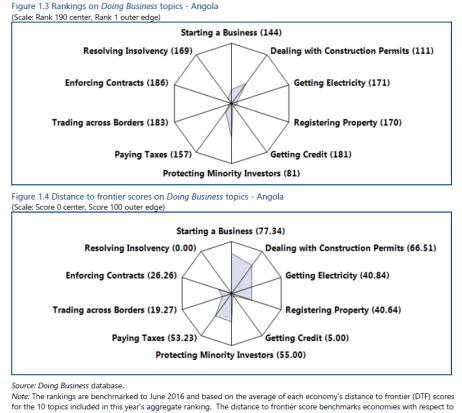
	Table 7-32 List of I ower Supply Transmission L									
	Year					number	Generation	Line		
Project#	of	Area	Voltage	Starting point	End point	of	Capacity	Length	Cost	Remarks
	operation		(kV)			circuit	(MVA)	(km)	(MUS\$)	
1	2025	Northern	400	HPP Caculo Cabaça	Cambutas	2	496	54	52.9	under construction(China)
2	2025	Northern	400	HPP Caculo Cabaça	Lauca	2	1326	25	24.5	
3	2025	Northern	400	TPP Soyo 2	Soyo	2	750	5	4.9	
4	2025	Central	400	TPP Lobito CCGT #1	Nova_Biopio	2	750	23	22.5	
5	2025	Northern	220	TPP Cacuaco GT #1	Cacuaco	2	375	5	2.3	
6	2025	Northern	220	TPP Cacuaco GT #2	Cacuaco	2	375	5	2.3	
7	2025	Northern	220	TPP Boavista GT #3	Sambizanga	2	375	5	2.3	
8	2030	Northern	220	HPP Quilengue (5)	Gabera	2	210	37	16.7	
9	2030	Southern	400	HPP Baynes	Cahama	2	300	195	191.1	
10	2030	Central	220	TPP Quileva GT #4	Quileva	2	250	1	0.5	
11	2030	Central	220	TPP Quileva GT #5	Quileva	2	250	1	0.5	
12	2030	Central	220	TPP Quileva GT #6	Quileva	2	250	1	0.5	
13	2030	Northern	400	TPP Soyo GT #7	Soyo	2	375	5	4.9	
14	2035	Northern	400	HPP Zenzo	Cambutas	2	950	41	40.2	
15	2035	Northern	400	HPP Genga	Benga Switch-yard	2	900	30	29.4	
16	2035	Central	400	TPP Lobito CCGT #2	Nova_Biopio	2	720	23	22.5	
17	2035	Southern	220	HPP Jamba Ya Mina	Matala	1	205	86	31.0	
18	2035	Southern	220	HPP Jamba Ya Oma	HPP Jamba Ya Mina	1	79	37	13.3	
19	2040	Northern	220	HPP Túmulo Caçador	Cambutas	2	453	16	7.2	
20	2040	Southern	220	TPP Namibe CCGT #3	Namibe	2	750	17	7.7	
21	2040	Central	400	TPP Lobito CCGT #4	Nova_Biopio	2	375	23	22.5	
Total							635	499.4		

 Table 7-32
 List of Power Supply Transmission Line Projects


Chapter 8 Review on Private Investment Environment

8.1 Report on private Investment

(1) 'Doing Business 2017' from the World Bank


First, the JICA Survey Team reviews the 'Doing Business 2017' Report to learn about the business environment of Angola.

The World Bank (WB) publishes a 'Doing Business' report on the ease of doing business based on indicator sets every year. The latest 'Doing Business 2017' report evaluates data such as the days necessary to complete the application process and the required fees. Out of 190 countries covered in a country ranking, Angola ranks 182nd (versus rankings of 25th for Portugal, 74th for South Africa, 137th for Mozambique, and 169 for Nigeria).

Figure 8-1 Ranking of Angola and other comparator countries

Item by item, Angola ranks 181st in 'Getting Credit,' 183rd in 'Trading across Borders,' 186th in 'Enforcing Contracts,' and 169th in 'Resolving Insolvency.' The rankings are based on the distance to the frontier score for each topic: i.e., the best country on the frontier is scored 100 and the other countries are scored from 0 to 100 according to their absolute distances to the frontier.

for the 10 topics included in this year's aggregate ranking. The distance to frontier score benchmarks economies with respect to regulatory practice, showing the absolute distance to the best performance in each *Doing Business* indicator. An economy's distance to frontier score is indicated on a scale from 0 to 100, where 0 represents the worst performance and 100 the frontier. For the economies for which the data cover 2 cities, scores are a population-weighted average for the 2 cities.

(Source: Doing Business database)

Figure 8-2 Ranks and scores for each topic

The JICA Survey Team understands that the problems of Angola concentrate around these low-scored items. The World Bank issued the following explanations in this regard.

- ✓ Credit information systems are not widely used. → Collateral laws or Bankrupcys law are not enacted. Borrower financial credit histories are not shared. Financial statements are not used effectively in providing credit.
- ✓ Contracts are not widely enforced. \rightarrow no commercial dispute resolution system is established.
- ✓ Liquidation or insolvency systems are not well established. → Angola has not experienced any liquidation or insolvency.

8.2 Review of the Private Investment Environment Report

This section identifies bottlenecks in the private investment environment and summarizes plans to develop a private electric power project.

8.2.1 Private investment environment in Angola

(1) Private Sector Country Profile: Angola

The report describes problems in Angola's private investment environment broken down into three factors: the 'institutional factor,' 'economical factor,' and 'other factors.' The problems are summarized in the table below.

The JICA Survey Team reviewed the 'Private Sector Country Profile: Angola in 2012,' the first comprehensive business guidebook on Angola. The profile began with the geographical conditions of the country and then moved onto the recent political conditions, economic conditions, and finally the conditions of the investment environment. In 2015, the African Development Bank published its Portuguese edition. Unlike the 'Doing Business Report' from the World Bank, the contents of the Portuguese edition have not been updated.

The report describes problems in Angola's private investment environment organized into three factors: the 'institutional factor,' 'economical factor,' and 'other factors.' The problems are summarized in the table below.

Iuon	cor robbens in migora s investment environment
	Problems in the private investment environment
	Laws and contracts tend not to observed.
institutional factor	 Infrastructures such as power and water supply are not properly established.
	• It takes much time to obtain approvals for applications.
economical factor	 All daily products are imported by exporting oil. The official foreign currency reserves therefore depend on the oil price. No stock market exists. A monetary market exists, but is weak and vulnerable. Credit evaluations for borrowers are poorly executed. Accounting data that reflect financial conditions is insufficiently used.
other factors	• The labor market for skilled workers is immature.

 Table 8-1
 Problems in Angola's investment environment

(Sources: AfDB 'Private Sector Country Profile: Angola' in 2012')

8.2.2 Legal system in Angola

The legal system in Angola is principally based on Portuguese law. Laws, Decrees, and Acts restated to private investment, meanwhile, are being enacted apart from basic laws such as the Civil Law, Labor Law, etc.

The National Bank of Angola (BNA) has a statutory authority to adopt the accounting standards for financial institutions. Especially banks that meet at least one of the criteria in 2015 must adopt IFRS. Other banks also must adopt IFRS issued by IASB but may do so voluntarily from 2016. Many companies other than financial institutions mentioned above do not adopt IFRS. They are said to prepare the financial statements in conformity with the Angolan Accounting Law and the General Accounting Plan (PGC) that was adopted by the Presidential Decree as of 2001.

In this section the JICA Survey Team extracts the laws and regulations it considers important for private investment in Angola, out of those described in the report on the business environment. Note, however, that no laws intended for specific sectors other than the power sector are selected. The new Private Investment Law (newPIL), a law that will be important for private investment, will be reviewed in a later section.

 Table 8-2
 Names of laws related to the private investment environment

Name	year	contents
Anti money Laundering Law	2010	set up a penalty on Money Laundering
Countering Financial of Terrorism Law No.34/11	2010	Penalty on Public Probity
Public Asset Managing Law, with Presidential Decree	Aug. 2010	for inventory of State Petimnoy, in bidding process
President Decree 177/10	ditto	
New Private Investment Law	May, 2011	New PILwas enacted in 2015.
	→Aug. 2015	ANIPwas establishe in 2003
Exchange Law No.5/97	Jun. 1997	Trade activity : President Decree No.265/10 (Nov. 2010),
		specific rules: BNA's Notice No.19/2012 (Apr. 2012)
Commercial Societes Law Law 01/04	Feb. 2004	defines types of fims

(Sources: AfDB 'Private Sector Country Profile: Angola in 2012')

8.3 Interviews with Japanese companies

8.3.1 Interviews with Japanese Companies in Angola

In October 2017, the JICA Survey Team interviewed three Japanese companies doing business in Angola: Sumitomo Corporation (Sumitomo Syoji), Marubeni, and Toyota de Angola, S.A (Toyota Tusho). Sumitomo Corporation and Marubeni operate Representative Offices in the country, and Toyota de Angola, S.A. is a Joint Stock Company. Sumitomo Corporation is said to have concluded a Minutes of Understanding (MOU) with the Government of Angola for the construction of Japan-made diesel power plants, but the details of the plan are not known.

Issues

- ① What hardships are they going through in doing business in Angola?
- ② What bottlenecks are there in Angola's legal system?
- ③ Is the New Private Investment Law (new PIL) of help in developing new projects?
- ④ Other

(results)

1 Hardships in doing business

• The low oil price binds the foreign reserves of Angola. Private companies are therefore unable to freely remit money outside of Angola. (Nacional Banco of Angola conducts a bid every week and only companies awarded bids are entitled to remit money.)

• The laws are drafted in Portuguese, the official language, which makes them hard to read and understand.

2 Legal bottlenecks

• New Presidential Decrees are being enacted. Actual business follows not the basic laws but the Decrees.

• Interpretation of law varies.

3 Request and opinions on the newPIL

· Laws are enacted, but direct negotiations will prevail.

④ Other

• The monetary market in Angola is weak and provides no good financial products

• Chinese companies doing business in Angola are said to settle their services not by cash but barter for oil. They are therefore immune to the influences of the strict regulations on bank remittance.

8.4 New Private Investment Law

8.4.1 New Private Investment Law (2015)

The New Private Investment Law, a law expected to have strong influence on private investment and project formation in Angola, was approved on August 11, 2015. It was entered into force on the same day that the former private investment law was repealed (Law No.20/11 of May 20, 2011).

A new agency called APITEX (Angolan Investment and Export Promotion Agency) was also formed to promote investments and exports.

An outline of the New Private Investment Law follows.

- ✓ The newPIL no longer includes minimum thresholds for investments. But to qualify for tax benefits and incentives, a foreign investor must invest at least \$1 million and a domestic investor must invest at least \$500,000.
- ✓ Decisions regarding private investments are in principle taken by the ministers responsible for the main sectors in which the investments are made, or by the Angolan executive (i.e., the President).
- ✓ The New Private Investment Law restricts indirect investment.
- ✓ An investor can be granted certain tax benefits and incentives, albeit no longer automatically.
- ✓ In the electricity and water sectors, the Angolan party should retain an interest of at least 35% in a joint venture.
- ✓ An investor can repatriate dividends, profits, and royalties. Any portion of a repatriated amount exceeding the funds of the company is subject to an additional tax.

8.4.2 Private power project in accordance with the New Private Investment Law

The details of a private electric power project are outlined below.

- ✓ In order to qualify for tax benefits and incentives, a foreign investor must invest at least \$1 million and a domestic investor must invest at least \$500,000. Negotiations are held directly with the Minister of Energie and Aqua (MINEA) or the Angolan executive (i.e., the President).
- \checkmark Any tax incentives are decided and applied through negotiation.
- ✓ A foreign investor forms a joint venture with Angolan individuals or an Angolan company. The Angolan party retains an interest of at least 35% in the joint venture.
- ✓ After paying additional taxes, a foreign investor is eligible to repatriate dividends, profits, and royalties.

At present, the private investment environment in Angola is still underdeveloped. While every country and company recognizes the big potential of Angola, they are still reluctant to go ahead.

A power project by a private sector differs from an ODA project, in general, as no guarantees from the government are obtained. The private sector must therefore bear all of the risks such as the fluctuating prices of fuel and materials, foreign exchange, interest rates, etc. by itself.

Finally, the following are requested when private electric power projects are formed in Angola.

- > Every party member observes and acts in accordance with the contract.
- > The political system in Angola is stable and assets will not be nationalized.
- ➤ A reasonable long-term PPA (Power Purchase Agreement) is concluded. Tariffs are set to adequately secure a certain profit level over the long term.
- > Profits earned are allocated in accordance with equity or the contract.
- ➤ A foreign investor is free to remit profit and dividends outside of Angola irrespective of the economy of Angola. (※)
- Funds from the monetary market of Angola are preferred: reasonable interest rates (not so high) and longer repayment periods.
- The auction system to settle payments for foreign countries re-started in 2018, with which the winner of the auction is entitled to receive foreign currencies for remittance. However this system seems to work only for a winner so that it does not meet requests from all import companies in Angola.

8.5 Summary and Bottlenecks

- Factors apart from the private investment issues tend to affect candidate projects. As a consequence, there seems to be little incentive to develop private investments overall. The Government needs to promote the observance of contracts and high transparency in appraising and approving projects.
- The lack of actual private investment projects to date leaves Angola with little experience in completing specific PPA agreements. As a result, negotiations and approvals may take longer.

Chapter 9 Long-term Investment Plan

9.1 Premise for fundraising

The progress of power development in Angola is mainly driven by PRODEL, RNT, and ENDE in an environment where private companies lack strong inclination to develop power projects by themselves. Under these circumstances, PRODEL will become a major implementing agency for generation, while ENDE will become the main implementing agency for transmission and distribution.

The JICA Survey Team reviews the financial statements for PRODEL, RNT, and ENDE. Given the apparent difficulty these companies would have in investing more with their own profits, they are likely to request funds from outside.

9.2 Fundraising for investment

First, the JICA Survey Team reviews whether it will be able to raise funds by issuing a bond or taking out a loan in a monetary market of Angola. As for the recent market condition, the official website of Banco Nacional de Angola (BNA) as of October 26, 2017 indicates a loan condition in terms of AOA, with an interest rate of 20.04% and repayment period of 1-3 years. The average interest rates for Treasury Bills with maturities of 91, 182, and 364 days, meanwhile, have been 16.12% (91 days), 23.19% (182 days), and 23.94% (364 days). In 2015 Angola raised \$1.5 billion by selling its first Eurobond, offering a yield of 9.5% with a maturity of 10 years. Considering this information, conditions for a non-sovereign bond would be more difficult.

Note: Fitch assigned the bond a "highly speculative" rating of B+ in line with Angola's sovereign ratings at the time. Angola was rated Ba2 by Moody's and B+ by Standard & Poor's and Fitch.

The issue of stock in Angola is improbable, as no stock market exists in the country. Actual fundraising must therefore depend on international monetary intermediaries such as the World Bank (WB), African Development Bank (AfDB), and Japan International Corporation Agency (JICA).

9.2.1 ODA loan

According to the definition of the Development of Co-operation Directorate (DAC), an ODA loan is a loan that includes a grant element of more than 25%. A loan with a greater grant element is advantageous to the borrower or borrowing country. International donor organizations such as the World Bank, AfDB, and JICA are eligible to extend such ODA loans.

Note: The grant element reflects the concessionary nature (i.e., softness) of a loan. The ratio of the grant element rises as the interest rate falls and the repayment period lengthens.

(1) Loan Conditions Extended by the International Financial Institutions

The World Bank (WB), European Bank for Reconstruction and Development (EBRD), and African Development Bank (AfDB) are all international financial institutions that provide ODA loans. Among them, however, the AfDB would be more familiar to Angola, a country located in the Sub-Saharan Region. The JICA Study Team visited the official website of AfDB to review the conditions of a Sovereign Guaranteed Loan (SGL) from the bank.

- ≻ Currency :USD, EUR, JPY, and others
- > repayment period: maximum 20 years (grace: maximum 5 years)
- ➢ interest: 6MLIBOR (float) +Funding Margin+Lending Margin (60bp)
- > principal: equal installments after the end of the grace period (other methods are acceptable)
- ➢ front end fee: none
- ➤ commission fee: charged
- > other: other conditions added depend on the project

Characteristics of an SGL: ① a comparatively long maturity of up to 20 years, including a grace period; ② the borrower can choose a currency out of a few choices; ③ the interest rate is defined as 6MLIBOR (USD, JPY)+ funding margin + lending margin (currently 60bp); ④ a 5-year grace period is extended to the borrower.

According to the official website of AfDB on March 12, 2018, the 6MLIBOR (Fixed Spread Loan in USD), including the lending spread, was set at 1.85%, and the front-end fee was 25bp.

(2) **ODA Loan by JICA**

Japan International Corporation Agency (JICA) provides ODA loans, including Yen loans, under the frameworks of bilateral corporation between Japan and recipient countries. The JICA Study Team visited the official website of JICA on March 12, 2018 to review the loan conditions for Yen loans. According to the website, Angola is classified as an LDC country. The following conditions are applied to LDC countries.

- currency: JPY (Japanese Yen)
- repayment period: 30 year (grace: 10 year)
- ▶ interest: 1.0% (fixed), applied after October 17, 2017
- ➢ principal: equal installment of 20 years

Characteristics of a Yen Loan: ① long maturity of 30 years, including the grace period; ② JPY currency; ③ low interest rate (1%), ④ payment of principal not required during the grace period.

(3) Some Remarks on ODA Loan

Several points must be considered when receiving an ODA loan.

> AfDB can only extend an SGL loan to a regional member country (RMC).

- A guarantee from the Government of Angola is needed when AfDB provides a loan to a project in Angola.
- A certain procedure is required to conclude a JICA Yen Loan. First, the Government of Angola must send an official request for an ODA loan. Next, the Government of Japan appraises the candidate project. Next, the Government of Japan exchanges an E/N with the Government of Angola and finally concludes the L/A. It will actually take at least 2-3 years to conclude the L/A.
- A guarantee from the Government of Angola is needed when JICA provides a loan to a project in Angola.

In a case where the implementing agency does not expect the ODA loan or may not receive the ODA loan, it may request Export Credit from Export Credit Agencies (ECA) in foreign countries as an alternative option. When Angola plans to import plants from Japanese manufacturing companies, it requests export credit from the Japan Bank for International Corporation (JBIC), the ECA of Japan.

The provision of Export Credit needs a guarantee from the Government. An ECA loan is faster than an ordinary ODA loan when the implementation agency successfully obtains the Government's guarantee and commercial banks forming a syndicate with JBIC are ready to provide co-financing. Moreover all OECD member countries, including Japan, are to provide the Export Credit in accordance with '*the Arrangement on Officially Supported Export Credits*.' Consequently, the condition of Export Credit provided by each OECD member country shall be the same.

Meanwhile, historically Angola has been receiving loans or ECAs from the Chinese Export-Import Bank. As a country outside of the OECD, China can provide loans with different loan conditions. When the JICA Study Team visited the official website of the China Export-Import Bank to find the specific loan conditions, no specific loan conditions with figures were disclosed.

Here is the ECA condition JBIC provides as of March 12, 2018, based on information from the official website of JBIC. Commercial Interest Reference Rates (CIRR) is as follows.

- ➤ currency: USD (\$)
- ➤ repayment period: over 8.5 years
- ➤ interest: 3.780%
- > principal: equal installments or another method
- Beside the interest, the borrower needs to pay an up-front fee as a risk premium. As Angola is classified in Category 6 as of February 2, 2018, Angola needs to pay 12.88% of the up-front fee.
- Candidate borrower (i.e., the implementing agency in Angola) needs to be covered with the insurance issued by NEXI, the Export Insurance Company of Japan, when it requests export credit from JBIC. A visit to the official website of NEXI on March 9, 2018 confirmed that Angola is classified in Category G. The premium calculated with the attached calculation sheet from NEXI is 15.832%.

9.2.2 Typical Loan Conditions

The table below summarizes typical loan conditions for ① an AfDB Loan (AfDB), ② Yen Loan (JICA), ③ commercial loan in Angola, ④ ECA. Each of the foregoing types has its own procedures, appraisal system, and conditions. While it is difficult at this juncture to determine which of the above types is best, a loan with a longer repayment period and lower interest would impose a lighter financial burden.

Note also that the funds are provided with a sub-loan instead of an original loan the implementation agency may lose the merit of the latter.

		type	loan condition
1	<u>AfDB Ioan (AfDB)</u>	ODA	currency: USD, EURO, JPY and others interest rate: 2.16444% (estimated) (6MLIBOR +fund margin +lending margin(60bp)) maturity: up to 20 years (grace period up to 5 year) principal: equall installments other conditions: commitment fee etc.
2	<u>Yen Loan (JICA)</u>	ODA	currency: JPY interest rate: 1.0% maturity: 30 years (grace period: 10year) principal: equall installments others: -
3	<u>Commercial Loan</u>	commercial Ioan	currency: AoA interest rate: 20% (estimated) maturity: 3 years principal: – others: –
4	<u>Export Credit</u>	commercial Ioan	currency: JPY, USD, EURO etc. interest rate: 3.78% (USD, over 8.5 years) maturity: over 8.5 years principal: equall installments other conditions: pay the front-end fee, insurance may be needed.

 Table 9-1
 Typical Loan Conditions

9.3 Long-term Investment Plan

9.3.1 Summary of the Long-term Investment Plan

The JICA Study Team reviewed the long-term power development plan as of March, 2018. The development plan has two parts: the power development plan to meet the demand forecast and the development plan for the transmission lines and sub-stations.

The table below shows the unit prices necessary to construct power plants, transmission lines, and sub-stations. (The unit prices for hydro and thermal power plants are shown in section 6.3.)

The power development plan up to Year 2040 consists of hydropower projects, thermal power projects (CCGT and GT), transmission line projects (220 kV and 400 kV), and sub-station projects (220 kV and 400 kV). Meanwhile, construction of the renewable energy (wind and solar) facilities will be left to other developers, and power will be purchased from them.

]	Гуре	unit capital cost (\$/kW)	Note				
Hydro	Large scale	2,700	Average in Angola				
power	Medium/Small	5,400	ditto				
Thermal	Combined Cycle	1,200	Construction cost of SoyoTPP				
power	Gas Turbine	650	International price				
	Diesel	900	International price				
Renewable	Wind	-	Considered in generation cost				
Kellewable	Solar	-	Considered in generation cost				
	220 kV	0.36 mil/ km	1line 1				
Transmission	220 K V	0.45 mil/ km	2 nd line				
Transmission	400 kV	0.78 mil./km	1 line				
	400 K V	0.98 mil/ km	2 nd line				
Sub-station	200 kV	0.054*(MVA)+11.58mil	per station				
Sub-station	400 kV	0.024*(MVA)+29.67mil	per station				

 Table 9-2
 Unit Prices for Construction

(1) Investment in terms of the Commissioning Year

Following are investment plans by the commissioning year. The total investment comes to 31,548 million USD: hydropower (19,083 million USD), thermal power (6,413 million USD), renewable energy (0 million USD), transmission lines (4,417 million USD) and sub-stations (1,636 million USD).

Table 9-3	Long-term	Investment	Plan up	to 2040	(commissioning	(Year)
I abie > e	Long term		- man up		(00111111111111111111111111111111111111	, /

													(ur	nit: mil. \$)
	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Hydro	0	0	5,589	34	0	0	0	0	5,864	810	0	567	0	0
TPP	300	0	0	0	1,050	531	0	531	81	0	81	450	81	163
Renewable	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transmission	208	0	2	279	0	878	556	2	1,614	0	785	0	0	18
Sub-station	0	25	0	225	0	444	51	0	196	0	426	0	0	18
total	<u>508</u>	<u>25</u>	<u>5,591</u>	<u>539</u>	<u>1,050</u>	<u>1,854</u>	<u>607</u>	<u>533</u>	7,756	<u>810</u>	1,293	<u>1,017</u>	<u>82</u>	<u>199</u>

											(unit: mil. \$)
	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	total
Hydro	0	2,565	0	0	2,430	0	0	1,223	0	0	19,083
TPP	450	163	325	450	163	450	244	450	0	450	6,413
Renewable	0	0	0	0	0	0	0	0	0	0	0
Transmission	34	0	0	8	6	0	6	0	18	2	4,417
Sub-station	129	0	0	0	103	0	0	0	18	0	1,636
total	613	2.728	325	458	2.701	450	250	1.673	36	452	31,548

Figure 9-1 Annual Investment up to 2040 (in terms of the Construction Schedule)

The following describes the JICA Study Team's review of the scale of the long-term investment plan. As PRODEL is responsible for generation and RNT is responsible for transmission and sub-stations, the review estimates the size of the investment amounts compared to the sales and net profit levels of PRODEL and RNT in 2016.

total investment amount up to 2040	Financial Statement (2016) (b)	(a)/(b)
investment for generation: <u>26,262 mil. \$</u>	PRODEL sales: 1,025 mil. \$ (=220,420.7 mil. AOA)	<u>25,6</u>
	net profit: 8.66 mil. \$ (=1,862.6 mil. \$)	<u>3,032</u>
investment for transmission & sub-station:	R N T sales : 405.9 mil. \$ (=87,297.665 mil. AOA)	<u>15,2</u>
<u>6,187 mil. \$</u>	net profit: 20.3 mil. \$ (=4,381.762 mil. AOA)	<u>304,8</u>

Table 9-4	Long-term Investment and 2016 Sales and Net Profit levels of PRODEL and RNT
-----------	---

*USD is converted using the official exchange rate of Nacional Banco de Angola as of March 12, 2018 (\$1=215.064 AOA (T.T.M))

The total investment in hydro and thermal power is 24.9 times the sales of PRODEL in 2016, or 2,944 times the net profit of PRODEL in the same year. The total investment in transmission and sub-stations is 14.9 times the sales of RNT in 2016, or 298.1 times the net profit of RNT in the same year. The investment amounts are so big, neither PRODEL nor RNT seems capable of obtaining the necessary funds with its current retained earnings. Thus, the new investment must be funded through borrowings from financial institutions.

(2) Long-term Investment in terms of the Construction Schedule

The agency implementing the new project will not need all of the funds in the commissioning year. Rather, it will require the funds year by year in accordance with the construction schedule. A standardized construction schedule for each facility is shown below.

	-8	-7	-6	-5	-4	-3	-2	-1
Hydro (Large)	5%	10%	15%	20%	20%	15%	10%	5%
TPP 1 (CC)					25%	30%	30%	15%
TPP 2 (Gas)				15%	25%	20%	15%	25%
Renewable (wind)			no (Constructi	ion but purchase powe	r		v o
Renewable (solar)			110 (Constructi	ion but putchase powe	.1		0
Transmission (220kV)					5%	40%	45%	10%
Transmission (400kV)					5%	40%	45%	10%
Sub-station (220kV)					5%	40%	45%	10%
Sub-station (400kV)					5%	40%	45%	10%

 Table 9-5
 Standardized Annual Construction Schedule during the Construction Period.

The total investment amount over the construction schedule is 26,023 million USD, consisting of 14,867 million USD for hydropower projects, 6,113 million USD for thermal power projects, 0 million USD for renewable energy projects, 3,339 million USD for transmission projects, and 1,705 million USD for sub-station projects.

													(unit: mil. \$)
	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Hydro	857	1,469	962	1,323	1,392	1,127	821	616	382	441	663	756	749	804
TPP	275	448	478	450	259	176	120	161	192	212	249	269	289	294
Renewable	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transmission	113	170	407	752	419	702	765	470	347	78	9	22	17	4
Sub-station	93	124	203	220	77	135	161	190	192	44	14	60	60	13
<u>total</u>	<u>1,337</u>	<u>2,210</u>	<u>2,051</u>	<u>2,745</u>	<u>2,148</u>	<u>2,139</u>	<u>1,868</u>	1,437	<u>1,113</u>	<u>776</u>	<u>935</u>	<u>1,106</u>	<u>1,116</u>	<u>1,114</u>
											(unit: mil.\$)			
	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	total			
Hydro	737	548	488	366	183	122	61	0	0	767	15,634			
TPP	265	398	288	337	239	308	203	135	68	0	6,113			
Renewable	0	0	0	0	0	0	0	0	0	0	0			
Transmission	3	6	4	3	3	8	9	3	0	0	4,314			
Sub-station	5	41	46	10	1	7	8	2	0	0	1,705			
total	1,010	993	825	716	427	446	281	139	68	767	27,766			

The following study assumes that the necessary funds will be borrowed in accordance with the annual construction schedule. Depreciation and O&M expenses are incurred after the commissioning year. The interest and principal payments take place in accordance with the repayment schedule.

(3) **Presumptions for borrowing**

The presumed loans and loan conditions are summarized as follows.

➤ In other countries, the agency implementing a project generally becomes both the borrower and repayer of the loan. This means that the implementing agency is responsible for repaying the loan. In Angola, however, GAMEK seems to responsible for construction with a loan obtained from an outside party. The newly constructed facility is to be handed over to PRODEL, RNT, or ENDE after commissioning, and the Government of Angola is responsible for repaying the loan. In this case, we cannot clearly discern who will borrow the loan and who will pay it off afterwards.

- It does not appear that PRODEL, RNT, and ENDE will be directly responsible for repaying the loan. This study assumes, however, that the implementing agency will be both the borrower and the repayer. It also assumes that all financial costs related from the borrowings, along with depreciation and O&M costs, will be debited in the financial statements of PRODEL and RNT.
- Considering the current financial conditions of PRODEL and RNT, they are very unlikely to be able to develop new projects with their own retained earnings. Thus, all projects are assumed to be developed through borrowings.
- The following three loans will be available for projects of Angola: (1) a Yen loan extended by JICA, (2) an ODA loan extended by African Development Bank (AfDB), (3) Export Credit extended by JBIC. Over the past few years, ODA agencies have tended to provide ODA loans to hydropower projects, transmission projects, and sub-station projects that have slim prospects for high profitability. Conversely, the agencies are unlikely to provide ODA loans to thermal power projects that have strong prospects for commercial profitability and are expected to be developed as IPP projects.
- The study therefore assumes that the hydropower projects and transmission and sub-station projects will be developed with ODA loans, while the thermal power projects will be developed with ECAs.
- The Yen loan extended by JICA and the ODA loan extended by AfDB are assumed to have upper ceilings of 85% of the total borrowing. This means that the implementing agency must fill the remaining 15% by itself while requesting to borrow 85% of the total investment. Likewise, the Export Credit is also assumed to be capped by a ceiling of 85% of the total investment.
- > The study also considers the Interest During Construction (IDC) as part of the total asset after the commissioning year.

	type	interest rate	currency	maturity year	grace year	front end fee	reference
Yen Loan	1	1.00%	JPY	30	10	0.20%	up to 85%
AfDB/(WB) loan	2	1.855%	USD	20	5	0.25%	up to 85%
(AfDB FSL USD)							
JBIC ECA USD	3	3.78%	USD	10	0	12.88%	

 Table 9-7
 Loan Conditions for Candidate Loans

The total loan amount up to 2040 is 22,120 million USD. The interest, front-end fee, and repayment of principal respectively come to 2,963 million USD, 674 million USD, and 3,936 million USD.

Table 9-8 Borrowings up to 2040 and Financial Expenses

													(u	nit: mil. \$)
	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
loan amount	1137	1878	1743	2333	1826	1818	1587	1222	946	659	794	941	948	947
interest	0	28	54	84	103	120	132	141	148	151	156	163	170	177
f−end fee	0	52	55	56	32	23	16	20	23	24	28	31	33	34
principal	0	38	79	119	141	156	167	180	197	215	236	296	346	428
total	<u>0</u>	<u>118</u>	<u>187</u>	<u>260</u>	<u>276</u>	<u>298</u>	<u>315</u>	<u>341</u>	<u>367</u>	<u>390</u>	420	489	<u>549</u>	639
	(unit mil. \$)													
	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	total			
loan amount	859	844	702	609	363	379	238	118	58	652	23,601			
interest	109	124	135	145	149	154	155	152	147	140	3,035			
f−end fee	30	45	32	38	26	34	22	15	7	0	676			
principal	28	61	86	114	135	161	178	190	195	195	3,941			
<u>total</u>	<u>166</u>	<u>230</u>	<u>253</u>	<u>297</u>	<u>310</u>	<u>349</u>	<u>355</u>	<u>357</u>	<u>350</u>	<u>335</u>	<u>7,653</u>			

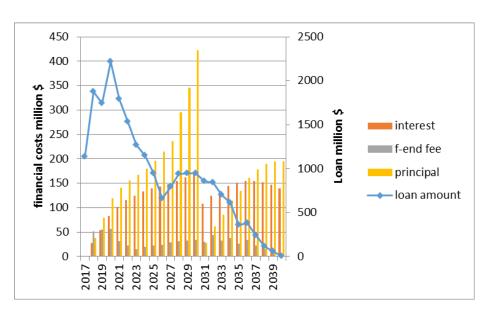


Figure 9-2 Borrowings up to 2040 and Financial Expenses

(4) **Presumptions for O&M expense and depreciation**

The presumptions after commissioning are as follows.

- New facilities are commissioned on the 1st of January of the commissioning year. Construction of transmission lines to be connected to newly constructed power plant will be completed one year in advance of the commissioning year of the power plant.
- > Annual depreciation is calculated by the straight-line method. The residual value is zero.
- The O&M expense for a power plant, a transmission line, and a sub-station is to be calculated based on a certain percentage of the newly constructed asset. The O&M expense for a thermal power plant consists of the O&M expense and cost of fuel consumed at the power plant. The O&M expense for renewable power (wind power and solar power) includes no cost for plant construction, as construction is left to other parties. PRODEL is assumed to purchase power from other parties with a pre-determined power tariff.
- Interest during construction (IDC) is counted as a part of an asset after commissioning. Depreciation and the O&M expense are based on the abovementioned asset.

	project period	O&M cost (%)	IDC (%) /100mil.\$	construction period (years)
Hydro (Large)	40	1	4.6	8
TPP 1 (CC)	25	3	10.41	4
TPP 2 (Gas)	20	5	11.51	5
Renewable (wind)	20	—	I	3
Renewable (solar)	20	—		3
Transmission (220kV)	40	2	2.42	4
Transmission (400kV)	40	2	2.42	4
Sub-station (220kV)	40	2	2.42	4
Sub-station (400kV)	40	2	2.42	4

Table 9-9Details on Depreciation and IDC

9.3.2 Long-Run Marginal Cost (LRMC)

(1) Calculation of the Long-Run Marginal Cost (LRMC)

The JICA Survey Team hereby calculates a long-run marginal cost (LRMC) in accordance with the 'Internal Rate of Return (IRR) Manual for Yen Loan Projects' (JBIC). LRMC is calculated as follows.

Long Run Marginal Cost (LRMC) = total project cost \times capital recovery factor + O&M expenses capital recovery factor = $r \swarrow (1-(1+r)^{-n})$

r:10%

n : durable years (hydropower, 40 years; thermal power, 25 years (CCGT) and 20 years (GT))

O&M expense = O&M expense + fuel cost (thermal)

O&M expense: calculated for a certain percent of the total construction cost

Fuel cost: annual fuel cost for thermal power plants

(2) The Total Investment Cost and LRMC for Generation, Transmission, and Sub-station

The total Investment Cost and unit cost per kWh shown below indicate the LRMC of the long-term investment plan. The unit cost may vary, but generally stays near 5-6 cents per kWh.

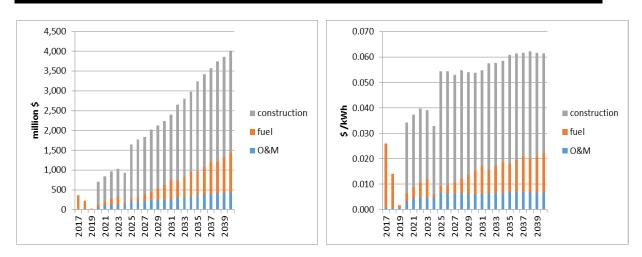


Figure 9-3 Total Annual Cost and Unit Cost for Generation

annual construction cost and unit cost for transmission lines and sub-stations are shown below. Unlike the thermal power plants, the transmission lines and sub-stations have fixed costs (e.g. construction and O&M costs) but no variable costs (e.g., fuel costs). The annual construction cost and unit cost for transmission lines and sub-stations are as follows. The unit cost peaks (1.5 cents/kWh) in 2027 and then falls to 0.8 cents/kWh in ensuing years.

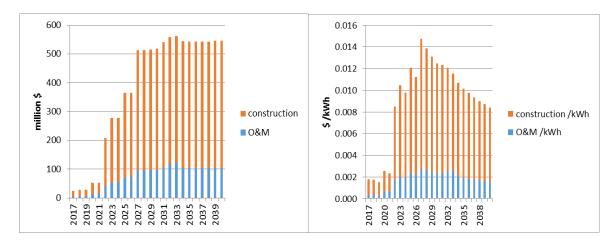


Figure 9-4 Total Annual Cost and Unit Cost for Transmission and Sub-station

(3) **Review on the Proper Tariff**

From here we review how much the incremental cost will rise based on the investment and O&M cost up to 2040, as well as the repayment schedule. (*)The cost consists of the construction cost, O&M cost, and depreciation. Thermal power plants bear fuel costs, as well. The payment of the interest, principal, and IDC will be considered after borrowings.

*: Actual construction cost for each year may fluctuate, depending on the construction schedule and repayment schedules. For this study, however, we adjust the annual cost for each candidate project to an equal level by applying the capital recovery factor.

The results are as follows. The unit price for generation will reach 8.5 cents USD at maximum, while the unit price for transmission and substation will reach 2 cents USD.

 Table 9-10
 Annual Unit Incremental Cost for Generation (hydro and thermal)

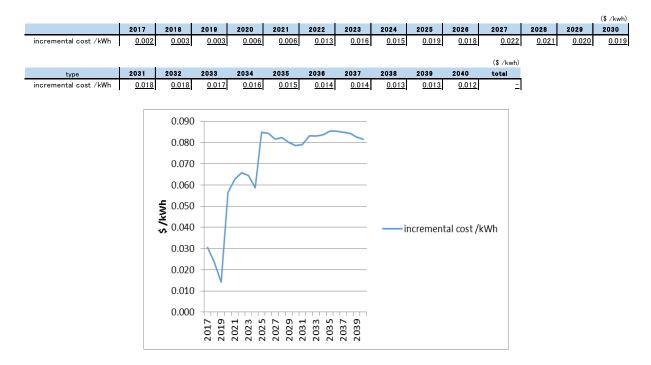


Figure 9-5 Annual Unit Incremental Cost for Generation

 Table 9-11
 Annual Unit Incremental Cost for Transmission and Sub-station

															(\$ /kWh)
	201	7	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
incremental cost \$/kWh		0.002	0.003	0.003	0.006	0.006	0.013	0.016	0.015	0.019	0.018	0.022	0.021	0.020	0.019
		_										(\$ /kWh)			
type	203	11	2032	2033	2034	2035	2036	2037	2038	2039	2040	total			
incremental cost /kWh	.	0.018	0.018	0.017	0.016	0.015	0.014	0.014	0.013	0.013	0.012	=			

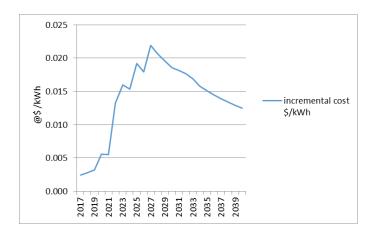


Figure 9-6 Annual Unit Incremental Cost for Transmission and Sub-station

From here we review the current unit revenue prices for PRODEL and RNT to cover the incremental cost as well as the existing cost.

The unit cost for PRODEL in 2016 is 19.86 AOA/kWh, which equals 0.09 \$/kWh. The unit cost for RNT in 2016 is 8.15 AOA/kWh, which equals 0.037 \$ /kWh.

A guest attending the workshop in 2018 pointed out that PRODEL did not debit the fuel cost. With this factored in, the total cost for PRODEL in 2016 seems to be smaller, as its unit price cost is also smaller than the real unit price cost, reflecting the missing fuel cost. (\bigotimes)

XA guest attending the workshop held in January 2018 pointed out that PRODEL did not debit the fuel cost in its P/L. The JICA Study Team interpreted this as an indication that PRODEL did not count the fuel cost because it receives the fuel for free. Meanwhile, the JICA Study Team found amounts of 25,152 AOA listed under 'fuel cost' in the 'Other Costs' component of PRODEL's P/L in 2016. This guest must have meant that the fuel was consumed by offices and buildings for administration activities, not by thermal power plants for generation.

	2016	(AOA, AOA/kWh) 2015
PRODEL	2010	2010
sales (kWh)	10,929,810,809.00	6,308,876,489.00
@revenue unit price /kWh	20.17	18.49
@cost unit price /kWh	19.74	20.10
RNT		
sales (kWh)	9,348,186,285.76	6,136,127,637.00
@revenue unit price /kWh	9.34	8.93
@cost unit price /kWh	8.45	7.39
ENDE		
sales (kWh)	9,348,186,285.76	5,829,423,620.07
@revenue unit price /kWh	13.59	12.19
@revenue unit price (without subsidy) /kWh	6.27	3.78
@cost unit price /kWh	13.28	13.39

Table 9-12 Unit Revenue Price/kWh and Unit Cost Price/kWh

(Source: JICA Survey Team)

Meanwhile, the unit revenue price (generation) derived from the long-term investment is 18.3 AOA, and the total unit cost consisting of the current unit cost and long-term investment cost will be 38.19 AOA, or 0.177 \$. Likewise, the unit revenue price (transmission) derived from the long-term investment is 4.3 AOA, and the total unit cost consisting of the current unit cost and long-term investment cost will be 12.45 AOA, or 0.57 \$/kWh. (conversion rate: \$1=215.064 AOA (T.T.M))

These figures indicate that the unit cost price for PRODEL needs to increase by 15 AOA, starting from the current 23.11 AOA. Likewise for RNT, the unit cost price needs to increase by 3.59 AOA, starting from the current 8.86 AOA.

	PRODEL	RNT
1. unit revenue price in 2016	@0.09 \$ /kWh	@0.043 \$ /kWh
	(<u>=@20.17</u> AOA/kWh)	(=@9.34 AOA/kWh)
2. unit cost price in 2016	@0.09\$ /kWh	@0.039 \$ / kWh
	(<u>=@19.74</u> AOA/kWh)	(<u>=@8.45</u> AOA/kWh)
3. incremental cost based on the	@0.085\$/ kWh	@0.02\$/ kWh
long-term investment	(<u>=@18.3</u> AOA/kWh)	(<u>=@4.3</u> AOA/kWh)
4 Total cost (2+3)	@0.175 \$/kWh	@ 0.059 \$/kWh
	(<u>=@38.04</u> AOA/kWh)	(<u>=@12.75</u> AOA/kWh)
5. increase of tariff	17.9 AOA	3.41 AOA
(unit cost of investment / current unit cost)	(1.92)	(1.51)

 Table 9-13
 Unit Prices and Unit Incremental Costs

XUSD is converted using the official exchange rate of Nacional Banco de Angola as of March 12, 2018 (\$1=215.064 AOA (T.T.M))

Following is a summary of the current power tariffs (announced in the national gazette as of December 2015). ENDE collects the sales revenue with these tariffs.

voltage	type	reference	calculation formula
	Domestic	contracted power: 1.3 kVA	\sim 120kWh : @2.46 AOA/kWh
		contracted power: 3.0 kVA	\sim 200kWh : @3.00 AOA/kWh
	Public lighting	supplied less than 1KV	$T=(1.80 \times d + 4.73 \times W) AOA$
Low	General and	contracted power: 3.0 kVA \sim	Single phase : T= $(3.10 \times d \times pc + 6.53 \times W)$
<u>Voltage</u>	Special Domestic	9.9 kVA	AOA
			Three phase: T= $(4.20 \times d \times pc + 7.05 \times W)$ AOA
	Commercial and	commercial:	$T=(4.20 \times d \times pc + 7.05 \times W) AOA$
	Industry	industry:	$T = (4.20 \times d \times pc + 7.053 \times W) AOA$
Middle	Commercial and	voltage: less than 30 kV	$T = (538.93 \times P + 5.88 \times W) AOA$
<u>Voltage</u>	Industry	voltage: more than 30 kV	$T = (538.93 \times P + 5.13 \times W) AOA$
High	Industry and	industry: more than 30 kV	$T = (598.36 \times P + 4.70 \times W) AOA$
<u>Voltage</u>	Distributors	distributor: more than 30 kV	$T = (598.36 \times P + 4.70 \times W) AOA$

 Table 9-14
 Summary of Power Tariffs as of December 2015

d : days passed after issuance of the bill

pc : contracted power (kVA)

- P: maximum power (KW) recorded at 15-minute meter
- W : power (kWh) consumed
- T : sales calculated with the formula (AOA)

The characteristics are as follows:

- Domestic in Low Voltage (contracted power: up to 3.0 kVA) is based on a gradual increase of prices. Consumed power per kWh is divided into two stages: up to 120 kWh and 120 kWh to 200 kWh. The unit price goes up from 2.46 AOA /kWh to 3.0 AOA /kWh.
- The unit price for General and Special Domestic (contracted power: more than 3.0 kVA) is double that of Domestic in Low Voltage (contracted power: up to 3.0 kVA). The calculation assumes that the amount the customer pays rises as the customer uses more power. The customer also has to pay more when the customer takes more days to pay the electricity bill.
- The formula for Commerce and Industry in Middle Voltage and in High Voltage considers the number of days (d) passed. The bill gets bigger as more days pass.
- Sales of Commerce and Industry in Middle Voltage and in High Voltage do not increase in proportion to the number of days (d). Rather, the figure increases with P (the maximum power (KW)) and W (power (kWh) consumed).
- ➤ The current level of tariff per kWh is around 7 AOA, while the unit cost price calculated with the accounting figures of ENDE is 13.28 AOA. The unit cost price calculated with the accounting figures of ENDE is double that of the current tariff. This reflects the national policy not to impose a high tariff on Angolan nationals, and to compensate the loss with subsidies.
- ➤ The tariff of ENDE shall generally include all costs of PRODEL and RNT, and the investment- related costs of the long-term investment plan is to to be added to the existing costs for distribution. In line with this approach, the incremental cost of the long-term investment is 0.232 \$ (=50.64 AOA). In this sense, decision-making on the subsidy shall be separated from the calculation of the necessary revenue and cost.
- Table 9-13 The incremental unit cost of the long-term investment consists of one component coming from PRODEL and one component coming from RNT.

@0. 175 \$ /kWh+@ 0.057 \$ /kWh=@0.232 \$ /kWh When expressed in AOA, @38.19 AOA /kWh+@12.45 AOA /kWh=@50.64 AOA /kWh

9.3.3 Recommendations on the Optimal Financial Strategy

(1) **Recommendations**

(a) Price Hike

As stated in the section 9.3.2, the unit cost caused by the investment up to 2040 is estimated at 0.175 for generation and 0.057 for transmission and sub-station. These estimates imply that the tariff must be raised to meet the increasing cost.

(b) Review of the candidate loans

Considering the current financial condition of PRODEL and RNT, it will be difficult for both to go on investing solely with their own retrained earnings. The study therefore assumes that both will depend on borrowing, and explains the candidate loan conditions available. Note, meanwhile, that some loans will need government guarantees and data on the project cycles and time by which the loans must be received.

(c) Proper Equity Ratio

If the agency implementing the project goes on borrowing, the equity ratio will decrease. A decreasing equity ratio would be unfavorable from a financial viewpoint, as it would increase the default risk. In this case, equity must be injected at the proper time. A 20-30% of equity ratio is generally favorable, though there seems to be no standard for a proper equity ratio in the power sector.

The table below shows the total assets, total equity, and equity ratios for PRODEL and RNT in 2016. The equity ratios for PRODEL and RNT were higher than 40% in 2016, which would be. If both companies go on investing solely with borrowing, their equity ratios will decrease: PRODEL $(47.0\% \rightarrow 3.8\%)$ and RNT $(41.1\% \rightarrow 5.3\%)$.

1 9		
accounting data in 2016	total investment	total asset+total investment
(equity ratio)	up to 2040	(equity ratio)
PRODEL total asset: 2,838 million \$ (47.0%)	26,262 million \$	29.100 million \$ (4.6%)
<u>RNT</u> total asset: 1,150 million \$ (41.1%)	6,187 million \$	7,337 million \$ (6.4%)

 Table 9-15
 Equity Ratios with Long-term Investment

(2) Conclusion

(a) Price Hike

The key implementing agencies in the Power Sector of Angola are PRODEL (generation), RNT (transmission and sub-station), and ENDE (distribution). ENDE receives a subsidy, which helps to lessen the financial burden for Angolan nationals.

The long-term investment plan consists of the generation development plan and transmission and the sub-station development plan. The plan requires increases in the unit revenue prices for PRODEL and for RNT, while direct tariff increases will not necessarily be required for ENDE. Revenue and expenditure will have to be calculated in each sector, but this might not lead to a higher tariff. This calculation of revenue and expenditure will be necessary even if a subsidy is provided to the distribution sector.

(b) Decision of the borrowings

As each financial institution has its own project-formation cycle and appraisal procedure, the implementation agency will select the financial institutions that are to be requested to provide loans. Taking the example of a project-formation cycle of JICA, the implementation agency may also request a grant to complete an Implementation Report (I/P) in the process of a project cycle.

If the candidate project needs a guarantee from the Government, the implementation agency has to pass through a step-by-step approval process within the Government. This implies that the Government of Angola sets up an official approval procedure internally.

(c) Maintain a Proper Equity Ratio

Compulsive injection of equity to a new project would be useful to maintain a certain equity ratio. An implementing agency for a new power project in India, for example, is requested to raise funds with a ratio of 70% (borrowing) and 30% (equity). In India, either the Central Government or the State Government provides equity to the implementing agency out of the budget or the long-term borrowing.

In fact, both the Central Government and the State Government in India are suffering from a red-ink budget and would be hard-pressed to provide equity from the start. The Government often provides funds to the implementing agency as long-term borrowing at the beginning but waives the liability if the implementing agency meets certain conditions. Thus, the implementing agency is finally able to keep a certain equity ratio by changing the status of the long-term liability into equity in future. (*)

*: India's 'Accounting for Government Grants and Disclosure of Government Assistance' Accounting Standard (IND AS20) defines a forgivable loan. This standard allows the Government, the lender of the loan, to waive repayment under certain prescribed conditions. In this context, a certain prescribed condition would be one that allowed the borrower of the loan to complete the construction on schedule. Important conditions for the implementing agency are a possible future cancellation of the borrowing at the beginning and the ability to convert the liability into equity.

Chapter 10 Economic and Financial Analysis

10.1 Financial Analysis of RNT · PRODEL · ENDE

The JICA Survey Team received financial statements for RNT, PRODEL, and ENDE. While the financial statements in 2015 and in 2014 are now available for all three companies, the Profit and Loss Statement for ENDE is only available in 2017 (January to June). To keep consistency among the three companies, the JICA Survey Team only analyzes the statements of 2015 and 2014.

Two types of the financial statements are prepared: the first in the national currency (AOA) and the other in USD converted at the official rate as of 25 April, 2018. (\$1=270.68 AOA)

10.1.1 RNT

(1) Financial Analysis of RNT

The financial statements of RNT report figures in units of 1000 AOA.

(a) P/L

Operating Income in 2016 consisted of Sales (82,297 million AOA), other operating income (4,489 million AOA), and other. The main component of Costs in 2016 was the cost of goods (67,206 million AOA). Gross profit totaled 8,293 million AOA after deducting financial costs (-859 million AOA) and Corporate income tax (2,145 million AOA). Finally, RNT posted net profit 4,381 million AOA for the Year (2016).

		unit: 1000 AOA	
	2016	2015	
Operating Incomes	87,297,665	54,811,737	Operating Incomes
Sales	82,791,700	51,450,377	Sales
Provision of service	16,760	22,478	Provision of service
Other operating profits	4,489,205	3,338,882	
Operating Costs	79,004,626	45,341,594	Other operating profits
Changes in inventories of finished goods and work in progress	0	0	Operating Costs Changes in inventories of
Works capitalized	0	0	in progress Works capitalized
Cost of goods sold and the materials consumed	67,206,922	37,787,871	Cost of goods sold and the
Personnel costs	4,391,321	3,127,136	Personnel costs
Amortizations	4,614,278	3,392,712	Amortizations
Other operationa costs and loss	2,792,105	1,033,875	Other operationa costs and
Gross Profit	8,293,039	9,470,143	Gross Profit
Financial costs	-859,334	-1,463,938	Financial costs
Subsidies and affiliate company results	0	0	Subsidies and affiliate com
Non-operating costs / income	-906,109	-579,007	Non-operating costs / inco
Profit before Tax	6,527,596	7,427,198	Profit before tax
Corporate income tax	2,145,834	2,228,159	Corporate income tax
Net Profit	4,381,762	5,199,039	Net result from ordina
Extraordinary results	0	0	Extraordinary results
Corporate income tax	0	0	Corporate income tax
Net Profit of the Year	4,381,762	5,199,039	Net profit of the yea

Table 10-1 Profit and Loss Statement (P/L)

	2016	(unit: 1000 USD) 2015
Operating Incomes	322,598	2015 202,550
Sales	305,947	190.129
Provision of service	62	150,125
Other operating profits	16.589	12.338
Operating Costs	291,952	167,555
Changes in inventories of finished goods and work	291,902	107,000
in progress	0	0
Works capitalized	0	0
Cost of goods sold and the materials consumed	248,355	139,641
Personnel costs	16,228	11,556
Amortizations	17,052	12,537
Other operationa costs and loss	10,318	3,821
Gross Profit	30,646	34,996
Financial costs	-3,176	-5,410
Subsidies and affiliate company results	0	0
Non-operating costs / income	-3,348	-2,140
Profit before tax	24,122	27,446
Corporate income tax	7,930	8,234
Net result from ordinary activities		
Extraordinary results	0	0
Corporate income tax	0	0
Net profit of the year	<i>16,192</i>	19,212

Table 10-2Balance Sheet (B/S)

		0-2 Da
		unit: 1000 AOA
	2016	2015
ASSETS	104 170 000	105 040 014
Non Current Asset	134,179,383	125,647,314
Tangible fixed assets	134,178,838	125,646,596
Intangible fixed assets	545	718
Investments in subsidiaries and associates	0	0
Other financial assets	0	0
Other non-current Assets	0	0
Current Asset	113,274,311	62,235,687
cash	68,243	203,990
Accounts receivable	101,955,502	53,566,640
cash and bank deposits	7,805,495	5,476,676
Other current assets	3,445,071	2,988,381
TOTAL ASSETS	247,453,694	187,883,001
EQUITY AND LIABILITY		
Equity	101,884,053	102,548,357
Equity		
Capital	11.579,155	11,579,155
Reserva	81,182,631	86,228,695
Retained earnings	4,740,507	-458,532
Net profit for the year	4,381,760	5,199,039
Total Equity	101,884,053	102,548,357
Non-current Liability	14,616,216	16,851,862
Medium and long-term loan	0	0
Deferred taxes	0	0
Proviziona for penziona	0	0
Provizions for other risks	0	0
Other Non-liquid liability	14,616,216	16,851,862
Current Liability	130,953,425	68,482,782
Accounts payable	123,646,573	66.368.651
Short-term loan	4,832,965	0
Current part of medium and long-term loans	0	0
Other current liability	2,473,887	2,114,131
Total Liabilities	145,569,641	85,334,644
TOTAL EQUITY AND LIABILITY	247,453,694	187,883,001

	2016	(unit: 1000 USD) 2015
ASSETS		
Non current asset	495,844	464,315
Tangible fixed assets	495,842	464,312
Intangible fixed assets	2	3
Investments in subsidiaries and associates	0	0
Other financial assets	0	0
Other non-current Assets	0	C
Current Asset	418,592	229,985
cash	252	754
Accounts receivable	376,765	197,949
cash and bank deposits	28,844	20,238
Other current assets	12,731	11,043
TOTAL ASSETS	914,436	694,300
EQUITY AND LIABILITY Equity	376.501	378.955
Equity	0,0,001	070,000
Capital	42,789	42,789
Reservs	300,001	318,648
Retained earnings	17,518	-1,694
Net profit for the year	16,192	19,212
Total Equity	376,501	378,955
Non-current Liability	54,013	62,274
Medium and long-term loan	0	02,274
Deferred taxes	0	0
Provisions for pensions	0	(
Provisions for other risks	0	(
Other Non-liquid liability	54,013	62,274
6		
Current Liability	483,923	253,070
Accounts payable	456,921	245,258
Short-term loan	17,860	0
Current part of medium and long-term loans	0	C
Other current liability	9,142	7,813
	0	0
Total Liabilities	537,935	315,344
TOTAL EQUITY AND LIABILITY	914,436	694,300

(b) B/S

Tangible assets in 2016 (134,178 million AOA) were the biggest component of non-current assets. Accounts payable in 2016 were the biggest component of current assets (101,955 million AOA), exceeding operating income for the year.

(c) C/F

Cash Flow from Operating Activities in 2016 was 446 million AOA, although RNT paid 18,881 million AOA to extraordinary items. Cash Flow from Investment in 2016 went into the red due to investment in subsidies and payment to tangible fixed assets. Meanwhile, RNT borrowed a loan of 4,649 million AOA, as net cash for the year was 2,328 million AOA. Finally, cash and cash equivalents at the end of that year totaled 7,805 million AOA.

	2016	(unit: 1000 AOA) 2015		2016	(uni 2
ash Flow from Operational Activities			Cash Flow from Operational Activities		
Receipt from customers	26,038,515	1,709,371	Receipt from customers	96,222	
Payments to suppliers	46,224,491	1,121,398	Payments to suppliers	170,817	
Payment to employees	0	1.572.087	Payment to employees	0	
Cash flow from operation	-20,185,976	-984,114	Cash flow from operation	-74,595	
Other receipts related to operational	20,100,010		Other receipts related to operational		
activities		39,916	activities	0	
nterest paid	1,750,305		Interest paid	6,468	
Cash Flow from Extraordinary	10 105 051	044,100	Cash Flow from Extraordinary items	-68.127	
tems	-18,435,671	-944,198	•		
Payments with extraordinary items	18,881,692	10,430,988	Payments with extraordinary items	69,775	
Cash Flow from Operating activities	446,021	-11,375,186	Cash Flow from Operating activities	1,648	
ash Flow from Investment			Cash Flow from Investment Activities		
ctivities			Receipt from:		
Receipt from:			Tangible fixed assets		
Cangible fixed assets ntangible fixed assets	0		Intangible fixed assets	0	
rinancial investment	0		Financial investment		
nvestment to subsidy	2,235,645	20,188,370	Investment to subsidy Interest and similar income	8,262	
nterest and similar income			Interest and similar income Dividends		
Dividends Potal receipts	2,235,645	20,188,370	Total receipts	8,262	
otal receipts	2,200,040	20,188,370	D		
ayment to:			Pavment to: Tangible fixed assets	16,439	
angible fixed assets	4,448,443		Intangible fixed assets	10,405	
ntangible fixed assets 'inancial investment	0		Financial investment		
ubsidy to investment		3,336,508	Subsidy to investment	10.000	
otal payment	4,448,443	3,336,508	Total payment Cash Flow before Extraordinary	16,439	
ash Flow before Extraordinary	-2,212,798	16,851,862	Cash Flow Defore Extraordinary	-8,177	_
ash Flow from Financial Activities			Cash Flow from Financial Activities		
leceipts from:		10.241.186	Receipts from:		
apital increase, supplementary paymants and			Capital increase, supplementary paymants and own share sales		
wn share sales					
Damage coverage			Damage coverage	15 100	
oan obtained	4,649,741		Loan obtained	17,183	
Subisidy and donations			Subisidy and donations		
'otal receipts	4,649,741	0	Total receipts	17,183	
Payment to:		0	Payment to:		
Capital decrease, supplementary provisions		5	Capital decrease, supplementary provisions		
			Purchase of shares		
Purchase of shares			Loan obtained		
.oan obtained			Depreciation of leasing contracts		
Depreciation of leasing contracts			Interest and similar interest	2,048	
nterest and similar interest	554,144		Total payment	2,048	
'otal payment	554,144		Cash Flow from Financial Activities	15,135	
ash Flow from Financial Activities	4,095,597	0	Cash Flow from Financial Activities	10,130	
			Net Cash Increase and its Equivalents	8,606	
	0 000 010	5.476.676	Cash and its Equivalents at the Beginning of the	-,	
et Cash Increase and its	2,328,819				
et Cash Increase and its Jash and its Equivalents at the Beginning of he Year	2,328,819 5,476,676	0	Year Cash and its Equivalents at the End of the	20,238	_

Table 10-3Cash Flow Statement (C/F)

(d) Conclusion

The major financial ratios were as follows.

The net profit margin in 2016 was 5.0 %, which was quite good. Return on Assets (ROA) in 2016 was quite small, falling to 1.8%, because accounts receivables were quite big compared to operating income. The current ratio, an indicator of financial stability, was 0.82, which was less than 1.0. The average collection (days) in 2016 was 426 days because the outstanding accounts receivables were bigger than operating income.

	2016	2015
net profit margin	5.0%	9.5%
return on assets (ROA)	1.8%	2.8%
current ratio	0.86	0.91
asset turnover	0.35	0.29
average collection (days)	426	357

Table 10-4Major financial ratios

10.1.2 **PRODEL**

The financial statements of PRODEL report figures in units of 1000 AOA.

(a) P/L

The major component of operating income in 2016 was sales (42,255 million AOA). Other operating income consisted of subsidies (178,182 million AOA). More than 70% of the operating costs were costs of goods (164.235 million AOA). Gross profit was positive, though subsidies and affiliates and corporate income tax followed. Net profit for the Year in 2016 was 1,862 million AOA.

One guest attending the workshop held in January 2018 pointed out that PRODEL did not debit the fuel cost on its financial statement. The JICA Study Team found that PRODEL's Financial Statement in 2016 debited 25,152,000 AOA of fuel cost as 'Other Costs.' This guest must have meant that PRODEL consumed the fuel for administrative purposes in offices or buildings.

	2016	unit: 1000 AOA 2015			(unit: 1000 USD)
Operating Incomes	220,420,796	116.631.357		2016	2015
Sales	42.238.471	25,655,726	Operating Incomes	814,539	430,997
Services rendered	0	0	Sales	156,087	94,808
Other operating profits	178,182,325	90,975,631	Provision of service	0	0
Operating Costs	215.757.239	126.819.841	Other operating profits	658,452	336,190
Changes in inventories of finished goods and work	210,707,200		Operating Costs	645,351	389,741
in progress	0	0	Variation in the finished product and in the		
Works capitalized	0	0	process of manufacturing Work for the company itself	0	0
Cost of goods sold and the materials consumed	164,235,499	98,320,782	Cost of goods sold and the raw materials and	0	0
Personnel costs	104,200,455	7.146.216	supplies consumed	606,913	363,333
Amortizations	., . ,	., ., .,	Personnel costs	38.438	26.408
	15,055,711	11,246,853	Amortizations	00,100	20,100
Other costs and operating Loss	26,064,475	10,105,990	Other costs and Operating Loss		
Gross Profit	4,663,557	-10,188,484	Gross Profit	17.233.63	-37.650.34
Financial results	1,297,742	-431,536	Financial results	4,796	-1.595
Subsidies and affiliate company results	-192,245	0	Results from Subsidiaries and associated	4,750	1,000
Non-operating costs / income	66,470	-83,047	companies		
Profit before tax	5,835,524	-10,703,067	Non-operating results		
Corporate income tax	0	0	Profit before tax	21,564	-39,552
Net result from ordinary activities	5,835,524	-10,703,067	Taxes on income		
Extraordinary results	0	11,033,610	Net result from ordinary activities		
Corporate income tax	-3,972,868	-99,357	Extraordinary results		
Net profit of the year	1.862.656	231,186	Taxes on income		
			Net profit of the year	6.883.23	854.32

Table 10-5 Profit and Loss Statement (P/L)

Table 10-6Balance Sheet (B/S)

Total EQUITY AND LIABILITY	610,353,816	476,804,191	Total EQUITY AND LIABILITY	2.255.491	1.761.97
Total Liability	323,404,164	167,790,893	Total Liability	1,195,102	620,05
Other current liability	440,079	7,656,042	Other current liability	1,626	28,29
Current part of medium and long-term loans	3,000,000	0	Current part of medium and long-term loans	11,086	
Short-term loan	5,046,446	7,241,186	Short-term loan	18,649	26,7
Accounts payables	311,917,639	149,893,665	Accounts payables	1,152,655	553,91
Current liabilities	320,404,164	164,790,893	Current liabilities	1,184,016	608,96
Other non-liquid liability			Other non-inquia nability		
			Other non-liquid liability		
Provisions for pensions Provisions for other risks			Provisions for other risks		
			Provisions for pensions		
Medium and long-term loan Deferred taxes	3,000,000	3,000,000	Deferred taxes	11,000	11,0
	3,000,000	3,000,000	Medium and long-term loan	11,086	11,00
Non-current liabilities	2 000 000	8 000 000	Non-current liabilities	11.086	11.08
Fotal Equity	286,949,652	309,013,298	Total Equity	1,060,389	1,141,95
Results for the year	286,949,652	309,013,298	Results for the year	1,060,389	1,141,9
Result o travel	1,862,656	231,186	Result o travel	6,883	8
Retained earnings	6,080,555	-890,804	Retained earnings	22,470	-3,2
Reserves	45,095,506	75,761,981	Reserves	166,645	279,9
Share capital	233,910,935	233,910,935	Share capital	864,390	864,3
Equity	286,949,652	309,013,298	Equity	1,060,389	1,141,9
EQUITY AND LIABILITY			EQUITY AND LIABILITY		
FOTAL ASSET	610,353,816	476,804,190	TOTAL ASSET	2,255,491	1,761,9
Other current assets	120,016,590	4,210,247	Other current assets	443,507	15,5
cash and bank deposits	17,870,497	26,635,522	cash and bank deposits	66,038	98,4
Accounts receivable	55,128,687	30,760,705	Accounts receivable	203,722	113,6
Cash	253,823	108,125	Cash	938	4
Current Asset	<i>193,269,597</i>	61,714,599	Current Asset	714,205	228,08
Other non inquit Assets	0	0	other non inquit Assets	0	
Other non-liquid Assets	0	0	Other non-liquid Assets	0	
Other Financial Assets	200,210	457,520	Other Financial Assets	580	1,0
Investments in subsidiaries and associates	265.275	457.520	Investments in subsidiaries and associates	980	1.6
Intangible fixed assets	410,010,544	414,032,071	Intangible fixed assets	1,040,000	1,002,2
Tangible fixed assets	417,084,219 416,818,944	414,632,071	Tangible fixed assets	1,540,305	1,532,2
ASSETS Non current assets	417.084.219	415.089.591	ASSETS Non current assets	1.541.286	1.533.9
		2010		2010	2010
	2016	2015		2016	2015

(b) **B**/S

Almost all of the non-current assets in 2016 were tangible assets (416,818 million AOA). Accounts payable in 2016 were 311,917 million AOA, exceeding accounts receivables. There was also a middle-term borrowing in 2016 (3,000 million AOA).

(c) C/F

Cash Flow from Operating Activities in 2106 went into the red (-69,075 million AOA) because payments to suppliers were much bigger than receipts and other incomes. Cash Flow from Investment Activities in 2016 was 49,988 million AOA because receipts from subsidy exceeded those to subsidy. Cash Flow from Financial Activities in 2016 mainly consisted of loans. (11,046 million AOA). Moreover, PRODEL received 151 million AOA as income from exchange rates.

As a result, net cash decreased -8,916 million AOA for the year and cash and cash equivalents at the end of the year totaled 17,870 million AOA.

	2016	unit: 1000 AOA 2015		2016	(unit: 1000 USD) 2015
Cash Flow from Operational			Cash Flow from Operational		
Activities			Activities		
Receipt from customers	12,516,975	2,052,676	Receipt from customers	46,255	7,585
Payments to suppliers	-127,095,520	-142,521,055	Payments to suppliers	-469,667	-526,670
Payment to employees	-12,539,480	-5,495,466	Payment to employees	-46,338	-20,308
Cash flow from operation	-127,118,025	-145,963,845	Cash flow from operation	-469,750	-539,392
Other receipts related to operational activities	58,042,079	104,933,775	Other receipts related to operational activities	214,488	387,770
Cash Flow from Operating activities	-69,075,946	-41,030,070	Cash Flow from Operating activities	-255,262	-151,622
Payments with extraordinary items	0	0	Payments with extraordinary items	0	0
Total cash flow from operating	-69.075.946	-41,030,070	Total cash flow from operating	-255,262	-151,622
Cash Flow from Investment	03,070,340	41,030,070	Cash Flow from Investment Activities		
Activities			Receipts from subsidy	279,874	229,672
Receipts from subsidy	75,736,210	62,150,986	Investment to subsidy	-95.147	-40.773
Investment to subsidy	-25,747,442	-11,033,610	Cash Flow from Investing Activities	184,728	188,898
Cash Flow from Investing Activities	<i>49,988,768</i>	51,117,376		104,720	100,050
Cash Flow from Financial Activities			Cash Flow from Financial Activities		
Receipts from loans	11,046,446	10,241,186	Receipts from loans	40,821	37,845
Payment to loans	-876,230	0	Payment to loans	-3,238	0
Cash Flow from Financial Activities	10,170,216	10,241,186	Cash Flow from Financial Activities	37,583	37,845
Net Cash Increase and its	-8.916.962	20,328,492	Net Cash Increase and its Equivalents	-32,952	75,122
Income / loss from exchange rates	151,938.00	6.307.029.00	Income / loss from exchange rates	561	23,307
Cash and its Equivalents at the Beginning of the Year	26,635,522	0	Cash and its Equivalents at the Beginning of the Year	98,428	0
Cash and its Equivalents at the End of the Year	17,870,498	26,635,521	Cash and its Equivalents at the End of the Year	66,038	98,428

Table 10-7Cash Flow Statement (C/F)

(d) Conclusion

The major financial ratios were as follows.

The net profit margin in 2016 was positive, albeit small (0.8%). Given the low net profit margin, Return on Assets (ROA) in 2016 was also small (0.6%). The current ratio, an indicator of financial stability, was 0.6, which was less than 1.0. The average collection (days) in 2016 was 91 days, which was quite good compared to the other two corporations.

Tuble 10 0 Mujor munchar ratios					
	2016	2015			
net profit margin	0.8%	0.2%			
return on assets (ROA)	0.6%	0.1%			
current ratio	0.6	0.4			
asset turnover	0.68	0.70			
average collection (days)	91	96			

Table 10-8Major financial ratios

10.1.3 ENDE

The financial statements of ENDE originally reported figures in units of AOA. To keep consistency with the statements of the other corporations (PRODEL and RNT), the financial statements are analyzed on a 1000 AOA basis.

(a) P/L

Major operating income in 2016 consisted of subsidies in process (68,414 million AOA), as well as electricity power sales (48,336 million AOA) and other. The biggest portion of operating costs was subsidized and consumed raw materials (82,436 million AOA), followed by personnel expenses (17,209 million AOA). Gross profit was positive, though ENDE incurred both financial loss (-7,024 million AOA) and non-operating loss (-12,193 million AOA). Finally, the net profit for the Year in 2016 was -16,318 million AOA.

Table 10-9	Profit and Loss Statement (P/L)
-------------------	---------------------------------

		(unit: 1000 AoA)
	2016	2015
Operating Incomes	127,058,787	71,032,092
Electricity Power sales	48,336,107	18,818,779
Subsidiy on Prices	68,414,297	49,009,948
Provision of services	8,782,110	2,097,476
Other operating income	1,526,272	1,105,888
Operating Costs	124,164,811	78,075,986
Costs of goods sold and materials		
Susidized and consumed raw materials	82,436,761	49,187,316
Personnel expences	17,209,246	13,953,362
Amortizations	8,769,867	6,115,252
Other costs operating losses	15,748,938	8,820,057
Gross Profit	2,893,976	-7,043,894
Financial incomet/ loss	-7,024,058	-1,496,678
Non-operating income / loss	-12,193,406	-14,234,891
Profit before Tax	-16,323,488	-22,775,464
Income tax	0	0
Profit after Tax	-16,323,488	-22,775,464
Extraordinary income/ loss	4,536	-27,877
Net Profit	-16,318,952	-22,803,341

	2016	(unit: 1000 USD) 2015
Operating Incomes	469,530.79	262,490.73
Electricity Power sales	178,620	69,543
Subsidiy on Prices	252,817	181,110
Provision of services	32,453	7,751
Other operating income	5,640	4,087
Operating Costs	458,836	288,521
Costs of goods sold and materials		
Susidized and consumed raw materials	304,635	181,766
Personnel expences	63,595	51,563
Amortizations	32,408	22,598
Other costs operating losses	58,198	32,593
Gross Profit	10,694	-26,029.88
Financial incomet/ loss	-25,957	-5,531
Non-operating income / loss	-45,059	-52,603
Profit before Tax	-60, 322	-84,164.04
Income tax	0	0
Profit after Tax	-60,322	-84,164
Extraordinary income/ loss	17	-103
Net Profit	-60,304.77	-84,267.06

Table 10-10Balance Sheet (B/S)

		(unit: 1000 AoA)		(unit: 1000 US
	2016	2015		2016	2015
ASSETS			ASSETS		
Current Assets	288,265,058	244,428,283	Current Assets	1,065,250	903,28
Inventory	6,016,839	5,191,603	Inventory	22,235	19,1
Accounts receivables	267,923,682	233, 226, 179	Accounts receivables	990,080	861,8
Cash and equivalents	12,112,350	4,760,025	Cash and equivalents	44,760	17,5
Other current assets	2,212,187	1,250,476	Other current assets	8,175	4,6
Non-Current Assets	183,090,288	191,098,017	Non-Current Assets	676,589	706,18
Fixed tangible assets	149,990,427	152,888,383	Fixed tangible assets	554,272	564,9
Fixed intangible assets	11,287,254	11,503,474	Fixed intangible assets	41,711	42,5
Other finaicial assets	17,699,466	17,986,697	Other finaicial assets	65,406	66,4
Other non-current assets	4,113,142	8,719,462	Other non-current assets	15,200	32,2
Total Assets	471,355,346	435,526,300	Total Assets	1,741,838	1,609,43
LIABILITIES AND NET ASSETS			LIABILITIES AND NET ASSETS		
Current Liabilities	216.587.284	164.213.403	Current Liabilities	800.373	606.8
Accounts payables	167,799,183	116,401,463	Accounts payables	620,082	430,1
Short term loans	5,102,112	1,102,112	Short term loans	18,854	4,0
Other current liabilities	43,685,989	46,709,828	Other current liabilities	161.436	172.6
Non-Current Liabilities	9.700.757	9.926.640	Non-Current Liabilities	35,848	36,6
Mid and long-term loans	169,412	395,294	Mid and long-term loans	626	1.4
Provisions for pension funds	9,416,453	9,416,453	Provisions for pension funds	34,797	34,7
Provisions for other risks and charges	114.892	114.892	Provisions for other risks and charges	425	4
Total Liabilities	226,288,041	174,140,043	Total Liabilities	836,221	643,5
EQUITY & CAPITAL			EQUITY & CAPITAL		
Equity & Capital	245.067.305	261.386.257	Equity & Capital	905.617	965.9
Capital	284,194,598	284,194,598	Capital	1,050,208	1,050,2
Retained earnings	-22,808,341	0	Retained earnings	-84,286	1,050,2
Incomes from the related period	-16,318,952	-22,808,341	Incomes from the related period	-60,305	-84,2
Equity & Capitals	245,067,305	261,386,257	Equity & Capitals	-60,305 905.617	-84,2 965,9
			Equity & Capitals	500,017	500,5
Total Liabilities and Net Assets	471,355,346	435,526,300	Total Liabilities and Net Assets	1,741,838	1,609,43

(b) B/S

Accounts receivables were prominent in current assets, and accounts payables were prominent in current liabilities. Outstanding accounts receivables and payables in 2016 were 267,923 million and 167,799 million AOA, respectively. Accounts receivables far exceeded the operating income for the year, so the collection (days) was 770 days. The total billed amounts during the year 2015 to June 2017 are: 52,621,339,094.34 AOA for Law Voltage and 35,046,795,121.71 AOA for Medium Voltage. Meanwhile ENDE collected during the same period 38,292,121.097 AOA for Law Voltage and 20,138,340,323 AOA for Medium Voltage. It means that collection rate for Law Voltage is 72.7% but that for Medium Voltage is 57.4%. It seems that the bill collection of Medium Voltage is harder than that of Law Voltage. As a result, some accounts receivables of Medium Voltage have gone bad. One possible reason for

the gap was the practice of crediting bills to clients without necessarily collecting in some cases. Uncollected receivables accumulated, as some receivables were no longer collected. The same thing happened with accounts payables.

(c) C/F

Cash Flow from Operating Activities in 2016 was negative because payments to suppliers and payments to employees were bigger than receipts from clients. Cash flow from Investment Activities was negative (-1,936 million AOA). Cash Flow from Financial Activities included 26,708 million AOA of allocations to Exploration and Contributions. Moreover, ENDE borrowed 5,000 million AOA. Cash Flow from Financial Activities made up the losses for Cash Flow from Operating Activities and Cash Flow from Investment Activities.

	2016	(unit: 1000 AoA) 2015		2016	(unit: 1000 USD) 2015
Cash Flow from Operational	-19.750.661	-1,703,503	Cash Flow from Operational Activities	-72,986	-6,295
Cash flow from operation	-11,557,392	1,866,526	Cash flow from operation	-42,709	6,898
Cash receipts from clients	36,938,612	16,532,900	Cash receipts from clients	136,502	61,095
Cash payments to suppliers	-32,928,684	-4,507,034	Cash payments to suppliers	-121,684	-16,655
Payment to employees	-15,567,320	-10,159,340	Payment to employees	-57,527	-37,543
Profits tax	-272,885	-137,051	Profits tax	-1,008	-506
Cash flow before other operational activi	-7,791,191	-3,331,305	Cash flow before other operational activities	-28,791	-12.310
Other receipts from operational activities	609,652	0	Other receipts from operational activities	2,253	0
Other paymentes from operational activities	-8,400,844	-3,331,305	Other paymentes from operational activities	-31.044	-12.310
Cash flow before nonstandard items	-129,193	-101,672	Cash flow before nonstandard items	-477	-376
Receipts from nonstandard items	27,094	50,420	Receipts from nonstandard items	100	186
Payments from nonstandard items	-156,287	-152,093	Payments from nonstandard items	-578	-562
	0	0	r ayments from nonstandard items	-916	-302
Cash Flow from Investment Activiti	-1,936,745	-2,039,147	Cash Flow from Investment Activities	-7.157	-7.535
Receipts from:	880,317	241,319	Receipts from:	3,253	892
Tangible fixed assets	3,753	2,081	Tangible fixed assets	14	8
			Financial investments	0	0
Financial investments	0	0	Interests	3,239	884
Interests	876,563	239,237	Payments to	-10,410	-8,427
Payments to	-2,817,062	-2,280,466	Fixed tangible assets	-10,410	-8,427
Fixed tangible assets	-2,817,062	-2,280,466	Fixed intangible assets	0	0
Fixed intangible assets	0	0			
			Casf flow from Financial Activities	107,313	16,019
Casf flow from Financial Activities	29,039,731	4,334,991	Receipts from	117,175	17,168
Receipts from	31,708,536	4,645,763	Loans	18,477	0
Loans	5,000,000	0	Allocations to Exploration and Contributions	98,698	17,168
Allocations to Exploration and Contributions	26,708,536	4,645,763	Payments to	-9,862	-1,148
Payments to	-2,668,804	-310,772	Loans	-4,530	-626
Loans	-1,225,882	-169,412	Interests	-5.332	-522
Interests	-1,442,922	-141,360		0	0
	0	0	Net Cash Increase or Decrease of the Year	27,170	2,189
Net Cash Increase or Decrease of the Yea	7,352,325	592,341	Cash and Equivalent at the Beginning of the	17,590	0
Cash and Equivalent at the Beginning of the Year	4,760,025	0	Year	17,550	0
Impact of the Addition of Cash Balances and its Equivalent from Winded -up ENE and EDEL	0	4,167,684	Impact of the Addition of Cash Balances and its Equivalent from Winded -up ENE and EDEL	0	15,401
Cash and its Equivalent at the End of the Year	12,112,350	4,760,025	Cash and its Equivalent at the End of the Year	44,760	17,590

Table 10-11 Cash Flow Statement (CF)

(d) Conclusion

The major financial ratios were as follows.

The net profit margin in 2016 was negative (-12.8%). Return on Assets (ROA) in 2016 was small, falling to -3.5%, because accounts receivables were big due to the far bigger total assets versus operating income. The current ratio, an indicator of financial stability, was 1.33 because current assets were bigger than current liabilities. The average collection (days) in 2016 was 770 days, which was bigger than 1 year (365 days).

	I Innancial I	
	2016	2015
net profit margin	-12.8%	-32.1%
return on assets (ROA)	-3.5%	-5.2%
current ratio	1.33	1.49
asset turnover	0.27	0.16
average collection (days)	770	1,198

Table 10-12Major financial ratios

10.2 Analysis of Financial Soundness and Sustainability

10.2.1 Analysis of a unit revenue price per kWh

The JICA Study Team calculated a unit revenue price and unit cost price. Appropriate actual data for generation, transmission, and distribution were unavailable, which compelled the Survey Team to use the generation data shown in the '*Activity Report*' issued by ENDE. As the revenue of ENDE consists of subsidies on prices as well as ordinary power sales, the Survey Team calculated two types of unit revenue prices: one without a subsidy on price and one with a subsidy on price.

The unit revenue price of PRODEL in 2016 was 4.43 AOA, which was far less than the unit cost price. For the other two companies, the unit revenue price and unit cost price were almost the same or the unit cost price was bigger than the unit revenue price. These figures suggest that none of the three companies have been maintaining appropriate profitability. The unit revenue price without a subsidy of ENDE in 2016 was 5.23 AOA, which was less than half of the unit cost price.

Finally the JICA Survey Team calculated the unit cost necessary to deliver electricity to the final users in Angola. The calculation assumes that the power purchased by Angolan nationals is generated by PRODEL, transmitted through the trunk-lines and sub-stations of RNT, and distributed by ENDE. Then the calculation divides the sum of all of the operational costs of PRODEL, RNT and ENDE by sales (kWh). The result is 44.81 AOA (=0.166 USD).

	2016	(AOA, AOA/kWh) 2015
PRODEL		
sales (kWh)	10,929,810,809.00	6,308,876,489.00
@revenue unit price /kWh	20.17	18.49
@cost unit price /kWh	19.74	20.10
<u>R N T</u>		
sales (kWh)	9,348,186,285.76	6,136,127,637.00
@revenue unit price /kWh	9.34	8.93
@cost unit price /kWh	8.45	7.39
ENDE		
sales (kWh)	9,348,186,285.76	5,829,423,620.07
@revenue unit price /kWh	13.59	12.19
@revenue unit price (without subsidy) /kWh	6.27	3.78
@cost unit price /kWh	13.28	13.39
Total cost of PRODEL, RNT and ENDE		
sales (kWh)	9,348,186,285.76	5,829,423,620.07
@total cost unit price /kWh in AOA	44.81	42.93
@total cost unit price /kWh in USD	0.208	0.200

Table 10-13 Unit Revenue Prices and Unit Cost Prices

X USD1= 215.064 AOA based on the official announcement of Banco Nacional de Angola, as of March 12, 2018

10.2.2 Bill Collection

Next, the JICA Survey Team calculated how many days each company needs to collect receivables, from a viewpoint of profitability. In 2014 and 2015, RNT and ENDE took more than 1 year (365 days) to collect receivables, while PRODEL collected receivables in around 90 days. ENDE took an especially long time, more than 1,000 days, to collect receivable in 2015.

ENDE offers an explanation for this issue in its Activity Report: "ENDE sets the goal of collecting from 70% to up to 85% of billed amounts." If a collection-day extends beyond 365 days, some of the accounts receivables go bad, making further collection almost impossible. This, in turn, makes it necessary to increase the collection rate further. At the same time, ENDE must review whether or not outstanding accounts receivables go bad.

1 able 10-14	Collec	tion (days) to	or Bills (days)
	days	2016	2015
PRODEL	ı	91	96
RNT		426	357
ENDE		770	1,198

10.2.3 Financial Soundness

(1) **Current ratio**

The current ratio is a financial indicator used to assess insolvency, especially short-term debt against current assets, including cash and high liquidity, to current liabilities. The current ratio should generally be higher than 2.0.

The low current ratios of the three companies, all below 2.0, reveal their poor solvency and financial soundness. The current ratio of ENDE in 2016 was 1.33, the highest among the three. This ratio, however, was calculated with very high accounts receivables. ENDE therefore needs to review accounts receivable more fully to see whether or not these assets are to become uncollectable.

Table 10-15	Current Ratio
--------------------	----------------------

2016	2015
0.60	0.37
0.82	0.81
1.33	1.49
	0.60 0.82

(2) **Debt Equity Ratio**

The debt equity ratio is a financial indicator used to assess soundness against liabilities. The current debt equity ratios for all three companies exceeded 0.4.

The liabilities for the three companies are limited to short-term borrowings or middle-term borrowings at present, and there are no long-term borrowings. If these companies start borrowing to meet the long-term power development plan, the debt equity ratio will clearly decrease in the long run. These companies will have to either keep certain amounts of profit every year to transfer to retained earnings or periodically increase their capital to maintain their debt equity ratios at a certain level.

	2016	2015
PRODEL	0.47	0.65
RNT	0.41	0.55
ENDE	0.52	0.60

10.3 Review of the Financial Condition of PRODEL, RNT and ENDE

10.3.1 Tariff

As stated in the section 9.3.2, the unit prices of PRODEL and RNT are not big enough to cover the incremental cost derived from the future investment. Both companies need to raise the power tariff or inject a subsidy to cover the incremental cost.

	PRODEL	RNT
1. unit revenue price in 2016	@0.09 \$ /kWh	@0.043 \$ /kWh
	(<u>=@20.17</u> AOA/kWh)	(=@9.34 AOA/kWh)
2. unit cost price in 2016	@0.09\$ /kWh	@0.039 \$ / kWh
	(<u>=@19.74</u> AOA/kWh)	(<u>=@8.45</u> AOA/kWh)
3. incremental cost based on the	@0.085\$/ kWh	@0.02\$/ kWh
long-term investment	(<u>=@18.3</u> AOA/kWh)	(<u>=@4.3</u> AOA/kWh)
4 Total cost (2+3)	@0.175 \$/kWh	@ 0.059 \$/kWh
	(<u>=@38.04</u> AOA/kWh)	(<u>=@12.75</u> AOA/kWh)
5. increase of tariff	17.9 AOA	3.41 AOA
(unit cost of investment/current unit cost)	(1.92)	(1.51)

Table 10-17 The Unit Incremental Cost Derived from the Long-term Investment

10.3.2 Cost Structure

The JICA Study Team's review of the financial statements of PRODEL, RNT and ENDE failed to turn up any financial trends, as the statements were available for only two years. Some studies by JICA in other countries, however, were able to find the proper profit margins. In its '*Project Master Plan Study on the Electricity Sector in the Democratic Socialist Republic of Sri Lanka*,' for example, JICA calculated the Return on Asset (ROA) necessary for investment and profit margin that covered the decreasing generation of hydropower plants in the dry season. X

X A review of a series of past financial statements of the Ceylon Electricity Board (CEB) in the 'Project Master Plan Study on the Electricity Sector in the Democratic Socialist Republic of Sri Lanka' (2018) determined that CEB needed an ROA of 5% to generate retained earnings and a profit margin of 3-7.5% to curb the impact of decreasing generation of hydropower plants in the dry season.

10.3.3 Borrowing

The liabilities of PRODEL, RNT and ENDE RNT are currently limited to short-term or middle-term liabilities. There are no long-term liabilities. If the three companies depend solely on borrowing, the credibility of each company will decline commensurately with the decreases in its equity ratio. In order to maintain a proper equity ratio, funds should be raised from a mixture of borrowings and equity, or from a forgivable loan, the approach followed India.

10.3.4 Regulation on the fiscal budget and the tariff

- > All of the accounting data must be kept for use for the calculation of their tariffs.
- The net profit of ENDE went into the red in 2016 and a subsidy was received to compensate for the loss. Meanwhile, PRODEL and RNT went into the black.
- ➤ While amount of subsidy ENDE receives is important, the calculation of the unit cost for the generation, transmission and sub-station will be unaffected.

10.3.5 Some Financial Issues to be considered

It seems that no rating firms have ever rated PRODEL, RNT, and ENDE so far. From here we summarize several important considerations.

(1) **Improvement of profitability**

No financial institution would extend a loan to an implementing agency with low profitability. Hence, the implementing agency needs to improve its profitability. While it may not be possible to raise tariffs to cover all costs, it will be important to encourage efforts to improve profitability.

(2) **Financial Soundness**

(a) Current Ratio

All three corporations have big receivables stemming from their apparently big current ratios. Yet some portion of the receivables went bad. The implementing agencies need to review the receivables and try to collect them faster.

(b) Return on Equity (ROE)

If an investment is extended solely by borrowing, it will push Return on Equity (ROE) down. As continuous borrowing may lead to an ultimate default, overdependence on borrowing is discouraged. A proper capital injection would therefore be necessary from a financial viewpoint.

10.3.6 Other issues

(1) Accounting and disclosure

- ➤ The time will come to compare the fuel costs of different thermal power plants, which includes the ones developed by the private investor. This will require disclosure of information on how much fuel cost the implementing agency consumes (though this may not be disclosed in the financial statement of PRODEL).
- ➢ In order to access the financial condition of PRODEL, RNT and ENDE, a review must be conducted to determine how the three newly established corporations (PRODEL, RNT and ENDE) took over or did not take over the assets when they were first established. Alternatively, the report from the Audit Firm could be reviewed, if necessary.

(2) Analysis on the fiscal condition of the Government of Angola

The JICA Study Team reviewed the financial conditions of the three corporations in the power Sector. If Angola plans to develop power projects through borrowing, it needs to consider the fiscal condition of the Government of Angola as well as the three corporations of Angola.

As stated in the Chapter 9, borrowings from JICA, JBIC, and AfDB need government guarantees. Borrowings guaranteed by the government surely increase the General Government Gross Debt. As the rate of the Gross Debt in Angola has already reached a high level, failure to undertake a new guarantee may seriously impede long-term power development. (\bigotimes)

*The power sector in Vietnam faces the same problem. The ratio of General Government Gross Debt already reached the upper ceiling of 65% in 2017. Consequently the Government of Vietnam is reluctant to undertake a new guarantee. Meanwhile, the Government of Vietnam is said not to provide government guarantees to new power project exceptionally. Rather the Government encourages the Electricity of Vietnam (EVN), the biggest utility power company in Vietnam, to raise funds by itself and raise the power tariff.

According to recent macro indices of Angola, the GDP in 2017 was 124.21 billion USD and the Rate of General Government Debt has reached 65.35% (=81.066 billion USD), starting from 44.3% in 2010. The total investment amount up to 2040 will reach 31,548 million USD, the equivalent of 25% of the 2017

GDP. If the Government of Angola goes on undertaking government guarantees, the total debt will almost reach Angola's 2017 GDP. This would not be favorable for the long-term sustainability of the country.

							0	
	2010	2011	2012	2013	2014	2015	2016	2017
GDP (billion USD)	82.53	104.12	113.92	124.91	126.73	102.62	96.34	124.21
General Government	(44.3)	(33.8)	(29.9)	(32.9)	(40.7)	(64.6)	(79.8)	(65.3)
Gross Debt (%)								

 Table 10-18
 GDP and General Government Gross Debt of Angola

(Source: IMF World Economic Outlook 2018)

Chapter 11 Environmental and Social Considerations

11.1 Outline of the Strategic Environmental Assessment (SEA) Approach for the Power Development Master Plan

An SEA focused on environmental and social aspects is to be conducted on the development of various power sources projected in the development scenarios from the "Power development plan / transmission system expansion plan." The assessment will be performed using the method shown in Figure 11-1. That is, we will quantitatively assess the environmental load from the development of each type of generation, prioritize the alternative development scenarios, and propose the most desirable scenario from the viewpoints of environmental and social conservation.

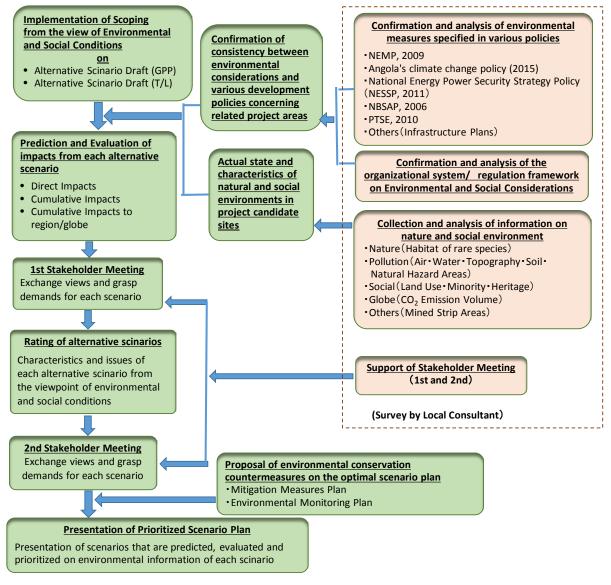


Figure 11-1 Workflow for the SEA

(a) Selection of scoping items and indicators

In order to analyze and evaluate each power development plan from environmental and social viewpoints, the plans are to be scoped based on evaluation items focused on the natural, social, and global environments.

(b) Evaluation of scoping items

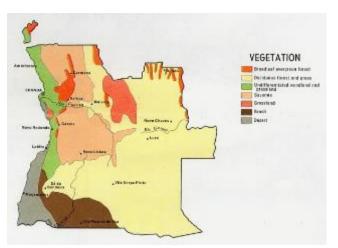
Quantitative evaluations are to be carried out based on a four-point score (from 0 to -3) quantifying the degree of impact on the above scoping items by project.

(c) Matrix Evaluation of each power generation development plan

A matrix evaluation of each alternative development scenario is to be carried out to quantitatively assess each scenario's impact on the environment.

11.2 Overview of the present state of the proposed project area

Angola consists of a land area of 1,246,700 km² situated on the Atlantic Coast of the western region of southern Africa. The country is bordered in the north by the Republic of Congo (201 km) and the Democratic Republic of Congo (2,511 km), in the east by Zambia (1,110 km), and in the south by Namibia (1,376 km). The physical characteristics of the 1,600 km Angolan coastline are extremely variable.


Angola can be divided into six geomorphological areas: coastal, marginal mountain chain (cadeia marginal de montanhas), the old tableland (planalto central), the Zaire Basin, and the Basins of the Zambezi and the Cubango.

The highest point is Moco Hill (2,620 m) in the central part of the country, where the major Angolan rivers have their origins.

Temperatures range from between 25 and 33 °C in the rainy season (September to April) and between 18 and 22 °C in the dry season (May to August). The climate in the north is tropical and humid, with an annual average rainfall of 1,200-2,000 mm. The coastal region has an average annual rainfall of less than 600 mm, decreasing from north to south. The inland climate ranges from high temperatures and high rainfall to semi-desert conditions.

The country can be divided into five ecozones (SARDC, SADC & IUCN 1994):

- 1. Lowland Tropical Forest (rainforest) in the northeast characterized by high rainfall all year round, high evaporation, and low soil fertility
- 2. Moist Savanna occupying around 70% of the country area, characterized by rainfall between 500 and 1,400 mm a year and broad-ranging soil types that are generally poor in nutrients
- 3. Dry Savanna in southern Angola characterized by unpredictable summer rainfall of 250-500 mm a year, with generally fertile soils but sparse vegetation
- 4. Nama–Karoo in the southwest characterized by an average rainfall of 100-400 mm a year
- 5. Desert along the narrow coastal strip in southwest Angola characterized by very low average rainfall of 10-85 mm a year.

(Source: Website Angola vegetation Map 1970) Figure 11-2 Status of Vegetation

(1) Natural Environment

(a) Current status of biodiversity

The palanca preta gigante (giant sable antelope) and the Welwitschia mirabilis ((Source: ERM)

Figure 11-3) have been world-renowned emblems of the Angolan identity for a long time. They are just two of many examples of the rich biological diversity of the Republic of Angola and how living beings can be emblematic of a nation.

Angola has a wealth of unique biological diversity. Scientists believe that Angolan biodiversity is one of the most important in the African continent. Over 5,000 plant species are inferred to exist in Angola (after excluding the vast flora wealth of Cabinda Province), and 1,260 of the species are endemic (Angola is the second richest country in Africa in endemic plants).

(Source: ERM) Figure 11-3 Welwitschia mirabilis

In total, 275 species of mammals have been recorded, many more than in most other countries on the continent. Meanwhile, the 872 species of bird recorded in Angola make up 92% of the avifauna in southern Africa.

The exceptional biodiversity in Angola can be attributed to a number of factors in combination: the vast size of the country, its inter-tropical geography, the altitude variation, and the biome types. The climate diversity, coupled with equal geographical and soil variability, contributes to the formation of bioclimatic zones that vary from dense tropical forest to poor vegetation in the desert. These different habitats are favorable for a high level biological diversity.

Chimpanzees, gorillas, and a diversity of other mammals also live in the forests. There is a consensus that special protection measures should be taken to protect the region and its biodiversity. Uncontrolled bush-burning, poaching, and anarchical logging have adversely affected the conservation of this and other important ecosystems in Angola.

Preliminary studies indicate that about 120 species of plant are listed as endangered plants. Many of them can be found protected areas. Trees such as the Avicenia and Combretum are important for the vegetation that protects the Angolan coast and are also listed as highly endangered species.

Animal species such as the cheetah, brown hyena, African wild dog, black rhinoceros, mountain and plain zebras, giraffe, and oryx are assigned extinct and/or very vulnerable status in some areas of the Angolan territory where they were hitherto abundant. Various other species also face extinction due to pressure from anthropogenic activities. To give a faint idea of the precarious conditions the mammals face, 50 out of the 275 species that inhabit Angola are listed as extinct and threatened species according to the IUCN.

Another threat to biological diversity is illegal trade of animals smuggled outside the country. There are unconfirmed signs that some of the bird species are smuggled in quantities large enough to endanger their survival. Approximately 34 Angolan birds are listed as endangered species.

According to the National Biodiversity Strategy and Action Plan (2007-2012), Angola has over 8,000 species of plant, out of which 1,260 are endemic. Concerning the fauna, 275 mammal species and 872 bird species are confirmed so far, of which 13 mammal, 11 bird, 22 reptile, 23 amphibian, and 72 fresh water fish species are reported to be endemic.

Table 11-1 Number of Endangered Species in Angola				
	Category	Critical	Endanger	Vulnerable
Number		(CR)	(EN)	(VU)
Fauna	108 Sp.	10	32	66
Flora	34 Sp.	-	3	31

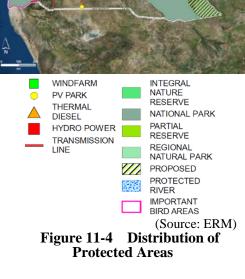
	able 11-1	Number of Endangered Species in Ango	ola
--	-----------	--------------------------------------	-----

(Source: Angola Government)

(b) Designation and management status of protected areas

T

Angola also has a number of protected areas established during the colonial period of the 1930s mainly for tourism, controlled hunting, protection, and scientific research. These areas were primarily considered to have low agricultural and economic potential but high value for hunters.


The protected areas in Angola include national parks, strict reserves, partial reserves, regional nature parks, and special reserves. As of 2011, Angola had 13 conservation areas, each governed by its own system of legislation. In total, they covered around 12.98% of the country's surface (82,832 km^2).

There were nine national parks (6.3%), four strict reserves (4%), two natural reserves, and one regional natural park (0.4%). Five public hunting reserves and a private hunting reserve were also established.

The current protected areas in Angola are listed in Table 11-2 below.

Table 11-2 List of Protected Area						
Name	Area (km ²)	Year				
National Parks						
Quiçama National Park	9,960	1957				
Mupa National Park	6,600	1964				
Bicuar National Park	7,900	1964				
Cangandala National Park	630	1970				
Cameia National Park	14,450	1957				
Iona National Park	15,150	1957				
Mayombe National Park	1,930	2011				
Luengue-Luiana National Park	45,818	2011				
Mavinga National Park	46,072	2011				
	148,510					
Total148,510Regional Park						
Chimalavera Nature Park	150	1974				
	150					
Reserves						
Ilhéu dos Pássaros Integral	2	1973				
Luando Integral Nature Reserve	8,280	1957				
	8,282					
Strict Reserves						
Buffalo Partial Reserve	400	1974				
Mavinga Partial Reserve	5,950	1973				
Luando Integral Nature	8,280	1957				
Reserve						
Namibe Partial Reserve	4,450	1973				
	19,080					
	NameI ParksQuiçama National ParkMupa National ParkBicuar National ParkCangandala National ParkCameia National ParkCameia National ParkIona National ParkMayombe National ParkLuengue-Luiana National ParkMavinga National ParkI ParkChimalavera Nature ParkReservesIlhéu dos Pássaros Integral Nature ReserveLuando Integral Nature ReservesBuffalo Partial ReserveLuando Integral Nature ReserveLuando Integral Nature 	NameArea (km²)l ParksQuiçama National Park9,960Mupa National Park6,600Bicuar National Park7,900Cangandala National Park630Cameia National Park14,450Iona National Park15,150Mayombe National Park15,150Mayombe National Park45,818Mavinga National Park46,072I Park148,510I Park150Reserves150Reserves150Reserve8,280Reserve8,282eserves8,282Buffalo Partial Reserve400Mavinga Partial Reserve4,450Namibe Partial Reserve4,450				

Table 11.2 List of Protected Area

(Source: Angola Government)

(2) Social Environment

The total area of Angola is 1,246,700 km². Angola's 2014 national census reports a national population of 25.8 million and population density of 21.8 head/km². (INE, 2014).

Infrastructures such as transport, electricity, water supply, waste disposal, healthcare and telecommunication have all deteriorated due to the civil war (much infrastructure has been destroyed; much has become untenable). Unexplored ordinance (UXO) still exists in vast areas of the country, which renders much of Angola unusable by inhabitants.

(a) Language and ethnic groups

The official and predominant language of use in Angola is Portuguese. Approximately 40% of the population speaks a Bantu dialect as their mother tongue.

Roughly 37% of Angolans are Ovimbundu, 25% are Ambundu, 13% are Bakongo, 2% are Mestizo, 1-2% are white Africans, and 22% are people from other African ethnicities.

(b) Type of Land Use

By land use, 47% of the country consists of non-agricultural land. Of the remainder, approximately 4% consists of cultivated agricultural land, approximately 46% consists of forests, and the remaining 3% consists of wheat/barley fields, pastures, and urban areas. Details of the land use are as shown in the table below.

Type of land use	Area (ha, %)		
Arable land, permanent crop land, permanent pasture land	59,190,000 (47.47)		
Forest	57,856,000 (46.41)		
Other (wheat/barley/urban land)	7,624,000 (6.12)		
Total	124,670,000 (100.00)		

 Table 11-3
 General Land Balance Sheet

(Source: Trading Economics World Bank 2015)

11.3 Structure and regime for environmental and social considerations in Angola

11.3.1 Legal and regulatory frameworks for environmental and social considerations

(1) **Regulatory framework for strategic environmental assessment**

Strategic Environmental Assessment (SEA) is not a mandatory requirement under the Environmental Framework Law (EFL) enacted in 1998.

(2) Related laws and regulations on strategic environmental assessment (SEA)

The table below lists the key laws and regulations to be considered for SEA implementation.

Table 11-4 Legal and Regulatory Frameworks for Environmental and Social Considerations

Policy, Law, Regulation	Main Contents
Environmental Framework Law (Law No. 5/98,19 June 1998)	The Environmental Framework Law (LBA – Lei de Base do Ambiente) defines the basic concepts and principles for the protection, preservation, and conservation of the environment, promotion of quality of life, and the rational use of natural resources. Article 16 of this law stipulates that an Environmental Impact Study should be mandatory for every undertaking that has an impact on the environmental balance and the population's quality of life.
Environmental Impact Assessment (Decree 51/04, July 2004)	The EIA Decree specifies the activities required during the EIA process (Articles 6 and 7), as well as the contents of the EIA report (Article 9).
Land Law (Law No. 9/04, 09/11/2004)	The Land Law declares land to be the property of the State and proposes the following multiple uses: ① To provide shelter and homes for inhabitants of Angola; ② A source of natural resources that can be used for mining, agriculture, forestry, and land planning; and ③ A support for economic, agricultural and industrial activities.
Cultural Heritage Law (Law No. 14/05, 07 October 2005)	This Law defines cultural heritages as material and immaterial assets that, in light of their value, must be protected.
Environmental Licensing (Decree 59/07, 13 July 2007)	This Decree lays down the rules that regulate the environmental licensing of activities that are judged to be potential sources of significant environmental impacts in light of their nature, location, or scale.
Environmental Auditing Decree (Decree 1/10, January 2010)	This Decree is a tool to be used after the environmental impact assessment process to make it possible to check whether the planned minimization measures and Monitoring Plan have been implemented once a project is installed. It also requires other checks, such as whether the minimization measures have had a positive performance, whether and how the anticipated impacts have occurred, and whether there have been other unanticipated impacts.
Water Quality (Decree 261/11, 06 October 2011)	This Decree specifies the National Environmental Standard on Water Quality.
Terms of Reference for Environmental Impact Studies (Decree 92/12, 01 March 2012)	This Decree establishes the guidelines and procedures to be followed during the development of Environmental Impact Studies.

Public Consultation for Projects Subject to Environmental Impact Assessment (Decree 87/12, 24 February 2012)	This Decree describes the opinions of residents concerning environmental impact assessment and the method used to reflect those impinions in the reports.
Regulation on Resettlement (Decree 117/16, 30 May 2016)	This Regulation aims to define the rules and procedures to govern the actions of the organs of the central administration and autonomous state in the resettlement and rehousing process for groups of people living in given territories and for households and residents affected by redevelopment and urban areas conversion, in accordance with the principles governing public administration. The Regulation cautions against the pursuit of the public interest and protects the rights and interests of citizens.

(Source: JICA Survey Team organized based on Angola Government materials)

(3) International treaties/conventions concerning SEA

The following table summarizes international treaties ratified by Angola with regard to environmental conservation.

icer ming BEA
Date of Ratify
1992
2006
1997
2007
2016
2000

(Source: JICA Survey Team organized based on Angola Government materials)

(4) INDC (Intended Nationally Determined Contribution) and Contribution of Master Plan 2040

At the United Nations Climate Change Conference, COP21, in Paris, France, the Paris agreement was adopted as a climate agreement by all the nations of the world. While the Paris agreement includes no obligations for CO_2 reduction, all countries are to submit national goals, updates, reports, and reviews every five years. In consideration of the worldwide movements regarding global warming and the environment, the introduction of renewable energy has been discussed positively in Angola.

In 2016 Angola submitted an Intended Nationally Determined Contribution (INDC) that encompasses, for Mitigation purposes, both unconditional and conditional measures for the reduction of GHG, to the United Nations Framework Convention on Climate Change (UNFCC).

In achieving unconditional and conditional goals, Angola promised to reduce GHG emissions by approximately 20% below its 2005 emissions (66.8 million tons) in the BAU (Business As Usual) scenario by 2030. GHG emissions in 2005 were 66.8 million tons, of which more than 95% was attributable to fossil fuel consumption.

In response to this situation, Angola takes the promotion of renewable energy projects as a top priority issue of national strategy.

1. Repowering of the Cambambe Central I Hydropower Plant:

It will increase the installation capacity from 180 MW to 260 MW and aim to reduce emissions by 1,529,311 tCO₂e per year.

2. Cambambe II Hydropower Plant:

It will secure 700 MW capacity and aim to reduce emissions by 3,282,000 tCO₂e per year.

3. Tombwa Wind Farm Plant

It will secure a capacity of 100 MW and reduce emissions by 157,258 tCO₂e per year.

4. The promotion of the biomass business

Along with the promotion of the biomass business, it plans to reduce emissions by 750,000 tCO₂e per year.

Based on the CO_2 emissions per 1 MW for each power development developed by the Angola government, the CO₂ reduction volumes by the renewable energy project proposed in the Master Plan are estimated as follows. The total reduction volume will be 5.64 million CO₂-tons.

Table 11-6 Reduction of CO_2 emissions by project proposed by M/P					
	Hydro PP	Wind PP	Solar PP	Bio. PP	Total
Install Capacity* (MW)	1,000	488	100	3	1,591
CO_2 Reduction (ton/y)	4,700,000	767,000	157,000	14,000	5,638,000

Table 11.6 Poduction of CO omissions by project proposed by M/P

(Source: JICA Survey Team organized based on INDC of Angola)

11.3.2 Differences between the JICA guidelines and Angolan regulations

Regarding the environmental and social considerations, the following table show key differences between the main items under the domestic law of Angola (Regulation on Environmental Impact Assessment) and the JICA Environmental and Social Considerations Guideline (2010).

Note, however, that the environmental and social considerations for Donor-supported projects in Angola are to be handled according to the requirements of the Donors.

Items	JICA Guidelines	Angola Regulations	Key differences
Implementation	JICA applies an SEA when	SEA is still not a mandatory	A gap exists.
of SEA	conducting a Master Plan or	requirement in Environmental	No articles on
	Feasibility Study.	Impact Assessment Regulation	SEA
		(EIAR).	implementation in
			the Environmental
			Framework Law,
			and no Guideline
			for SEA
			implementation
EIA Report	EIA reports are requested for	Based on Environmental Impact	No gaps.
	projects expected to have serious	Assessment Regulation, projects	
	adverse environmental impact.	requiring EIA/IEE reports are	
		specified.	
Alternative	Examination of available	Examination of available	No gaps.
examination	alternatives is mandated.	alternatives is mandated by	
Environmental	An environmental checklist	No.	A gap exists.
checklist	specific to an EIA is provided.		
			No Article on
			formulating a
			Checklist is

 Table 11-7
 Differences between JICA Guidelines and Angolan regulations on SEA

Items	JICA Guidelines	Angola Regulations	Key differences
			provided in the Environmental Impact Assessment Regulation
Resettlement Action Plan (RAP)	The project proponent is obligated to prepare a RAP. If the number of resettled households is small (e.g., one household), the RAP can be simplified. The RAP is initially prepared as a part of the EIA Report.	No Article on formulating a RAP is provided in the Environmental Impact Assessment Regulation.	A gap exists. While no Article on formulating a RAP is provided in the Environmental Impact Assessment Regulation, a RAP is to be formulated based on the WB Guideline if donors ask for its implementation.
Land compensation	Land is compensated by replacement cost as much as possible.	While no descriptions on how to estimate or pay compensation are provided, the compensation cost is likely to be estimated based on the market price.	A gap exists. The full replacement cost is unlikely to be considered.
Monitoring/ Mitigation measures	Implementation of monitoring and mitigation is required.	Implementation of monitoring and mitigation is required by EIAR.	No gaps.
Disclosure information	The EIA report is to be disclosed 120 days before the agreement documents are to be concluded.	Based on EIAR, the EIA is to be disclosed to the public.	No gaps.

(Source: JICA Survey Team)

11.3.3 Organizations and their roles for Environmental and Social considerations

(1) Organizations for Environmental and Social Considerations (Role of central government and its executing agency)

The administrative organization on environmental and social considerations in Angola is under the control of the National Environmental Impact Prevention and Evaluation Bureau under the Ministry of the Environment. The main tasks of the Ministry of Environment in the field are as follows:

- Coordinate sustainable management strategies and policies for natural resources, such as the assurance of environmental sustainability;
- Coordinate national response actions to address global environmental problems, notably through the implementation of international conventions and agreements;
- Require environmental licensing for activities likely to cause significant environmental and social impacts;
- > Develop and coordinate national programs focused on the conservation of natural ecosystems;
- Promote programs run by and for nature conservation areas, natural parks, areas of the biosphere, and landscape protection and preservation;
- Promote necessary measures to ensure biosafety and biodiversity in order to better ensure protection of the environment and quality of life;

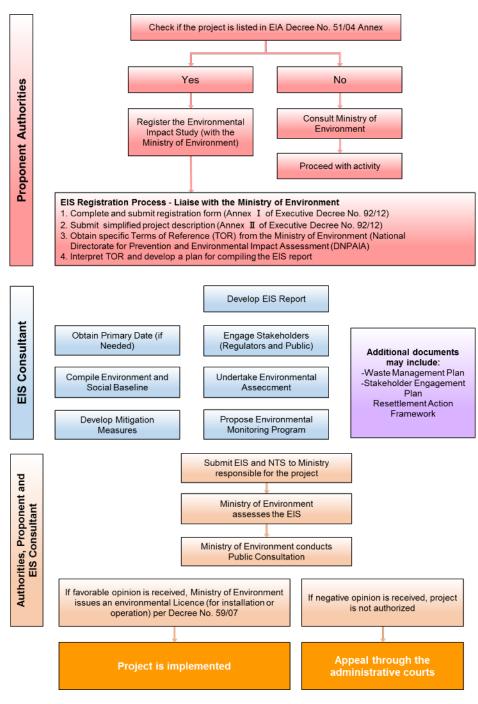
The National Directorate for Prevention and Environmental Impact Assessment (DNPAIA) is accountable for evaluating environmental impact studies, while the National Directorate of Environment (DNA) is accountable for the conception and implementation of urban management policies and urban strategies.

(2) Key items implemented through environmental and social considerations

(a) Implementation of Environmental Impact Assessment

The EIA procedures are set out in the Decree on Environmental Impact Assessment.

The activities listed in the Annex to the EIA Decree are categorized in the following sectors:


- •Agriculture, fisheries and forestry;
- •Extractive industries, such as petroleum, mining and dredging;
- Energy industry;
- •Glass industry;
- Chemical industry;
- •Infrastructure projects; and
- •Other projects.

The energy industry projects that EIA implementation will be required for the following activities:

- a) Industrial installations for carrying gas, steam, and hot water, and transmission of electrical energy by overhead cables;
- b) Surface storage of natural gas;
- c) Underground storage of combustible gases;
- d) Surface storage of fossil fuels;
- e) Industrial briquetting of coal and lignite;
- f) Installations for the production and enrichment of nuclear fuels;
- g) Installations for the reprocessing of irradiated nuclear fuels;
- h) Installations for the collection and processing of radioactive waste;
- i) Installations for hydroelectric energy plants with capacities of greater than 1,000 kW;
- j) Power transmission lines with capacities above 230 kV;
- k) Hydraulic works for the exploitation of water resources, such as dams for hydroelectric purposes, sanitation or irrigation, the creation of navigable canals, irrigation, the straightening of watercourses, the opening of bars and river mouths, bay crossings, and dykes;
- 1) Nuclear power stations with capacities of greater than 500 kW; and
- m) Nuclear power stations generating electricity through fission of isotopes;

(b) EIA Implementation Process

Figure 11-5 shows the screening and appraisal process for environmental permit issuance. At first, the developer carries out a screening to determine whether EIA is necessary according to the EIA Decree. When EIA is judged to be necessary, the process for environmental permit issuance is implemented.

(Source: JICA Survey Team)

Figure 11-5 Screening and Appraisal for Environmental Permit Issuance

(c) Environmental monitoring

According to Article 22 of the EIA Decree, the competent environmental authority (in this case the Ministry of Environment) is responsible for monitoring the implementation of the EIA in specific projects. In practice, however, the Ministry or its Directorate often neglects to follow up the monitoring due to a lack of available resources and professional capacity.

(d) Public consultation

All projects listed in the Annex to the EIA Decree (see above (2) a) must be a subject to a public consultation programme organized by the Ministry of Environment, as prescribed in Article 10 of the EIA Decree.

The public consultation process, to be undertaken by the responsible ministry, comprises the following steps:

- Release of the non-technical summary of the EIA report to the interested and affected parties (as defined in Article 3 of the Decree);
- Consideration and appraisal of all presentations and comments related to the proposed project;

Compilation of a brief report within eight days of the completion of the consultation period, specifying the measures taken, the level of public participation, and the conclusions that may be drawn;

The consultation process must take place over a period from five to ten days, and the costs must be borne by the developer.

(e) Land acquisition and resettlement

There are two type of regulation for land acquisition and resettlement in Angola: the "Land Law, No.9/04, 09/11/2004" and the "Regulation on Resettlement, No.117/16, 30/05/2016."

Article 12 of the Land Law stipulates that in cases of land acquisition for public works, the Nation or state governor shall pay appropriate compensation to landowners who have land use rights. Landowners receive compensation under this law.

Moreover, based on the Regulation on Resettlement enforced in 2016, compensation related to relocation is to be negotiated among the state, the affected people, and the business operator.

Compensation is provided in cash or as real estate equivalent to the land and house(s) lost.

11.4 Comparison of Alternatives (including Zero Options)

The zero option in this master plan is to be left out from this study, since it would be unrealistic to prepare measures and plans that enable a power development master plan to meet the power demand up to 2040 without implementing various power developments.

The draft scenario for power development is shown in chapter "11.8 Scenario analysis from ."

11.5 Scoping

In accordance with the following procedure, the SEA is to be conducted on power source development plans in the several alternative development scenarios from environmental and social viewpoints.

(1) Selection of scoping items and indicators

In order to analyze and evaluate each alternative development scenario (power development) from environmental and social viewpoints, evaluation items related to various power development projects are selected with reference to the JICA guidelines (checklist).

Table 11-8 Scoping Item Selection for SEA								
			Co	nventio	nal	Rene	wable E	nergy
Sort		Impact Items	Hydro	Coal	LNG, Oil	Wind	Solar	Biomass
	1	Air Quality	С	Α	В	D	D	С
-	2	Water Quality	В	В	В	С	В	В
ntro	3	Soil Quality	D	В	C	D	D	В
Co	4	Sediment	D	D	D	D	С	D
itior	5	Noise and Vibration	В	В	В	Α	В	В
Pollution Control	6	Odor	D	С	С	D	D	С
Н	7	Waste	С	Α	С	D	Α	Α
	8	Subsidence	В	В	В	D	D	В
al t	9	Protected areas	Α	D	D	Α	А	А
Natural Environ ment	10	Ecosystem	Α	D	D	Α	А	А
ZĒ	11	Topography and Geology	Α	С	C	В	В	С
	12	Hydrology	С	D	D	D	D	D
	13	Land acquisition	Α	Α	В	D	D	С
	14	Disturbance of Poor People	С	D	D	D	D	D
	15	Disturbance of Ethnic Minority Groups and Indigenous People	А	С	D	D	D	D
	16	Deterioration of Local Economy such as Loss of Employment and Livelihood Means	С	С	С	С	С	С
	17	Land Use and Utilization of Local Resources	А	В	В	В	В	В
ent	18	Disturbance of Water Usage, Water Rights, etc.	A	Α	Α	D	D	D
Social Environment	19	Disturbance of Existing Social Infrastructure and Services	С	С	С	С	С	С
al Env	20	Social Institutions such as Social Infrastructure and Local Decision-making Institutions	С	С	С	С	С	С
Soci	21	Misdistribution of Benefits and Compensation	С	С	С	С	С	С
•1	22	Local Conflicts of Interest	С	С	С	С	С	С
	23	Cultural Heritage	В	D	D	D	D	D
	24	Landscape	В	С	С	А	В	D
	25	Gender	D	D	D	D	D	D
	26	Children's Rights	D	D	D	D	D	D
	27	Infectious Diseases such as HIV/AIDS	С	С	С	С	С	С
	28	Work Environment (including Work Safety)	С	С	С	С	С	С
Oth er	29	Accidents	С	С	С	С	С	С
0 v	30	Cross-boundary Impact and Climate Change	С	Α	В	D	D	D

Table 11-8 Scoping Item Selection for SEA

- Note; A: Significant negative impact is expected
 - B: Negative impact is expected to some extent
 - C: Negative impact is unknown (further examination is needed and the impact may be clarified as the study progresses), and no evaluation is to be done in the SEA
 - D: No impact is expected, and no evaluation is to be done in the SEA

Based on the aforementioned screening, the scoping objects to be implemented in the SEA were narrowed down to the 17 items shown in Table 11-9 (natural environment, 10 items; social environment, 6 items; global environment, 1 item) for evaluation according to the evaluation criteria mentioned below.

Category	Items	Indicators				
	Topography & Geology	Destruction of ground				
	Soil	Erosion, disposal, leakage of toxic substances; peeling off of top soil				
	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances				
	Quality of Air	Emission of pollutants from facilities				
Natural	Noise/Vibration	Noise/vibration from facilities or operation activities				
(10)	Waste	Domestic or industrial waste from facilities				
(10)	Subsidence	Use of underground water by facilities				
	Flora	Deforestation (including mangroves), peeling of				
	FIOTA	vegetation, changing of the flora ecosystem				
	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems, adverse impact on migratory fish or birds				
	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks				
	Resettlement / Land acquisition	Involuntary resettlement / Land requirement				
Social	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people				
(6)	Land Use	Land use conflict				
	Water Use	Water use conflict				
	Landscape	Destruction of landscape				
	Historical Heritage	Loss of local heritage				
Global (1)	CO ₂ Emission	Adverse impacts on global warming				

 Table 11-9
 Selected scoping items and impact evaluation indicators

(2) Method for evaluating the scoping items

(Source: JICA Survey Team)

Each project listed in the alternative development scenario is to be quantitatively evaluated based on impact evaluation criteria scored on a four-point scale (from 0 to -3), as shown in Table 11-10.

The scores (degrees of impact) for each alternative development scenario are totaled, and each scenario is prioritized based on the total score from environmental and social viewpoints.

Table 11-10 Impact Evaluation Criteria

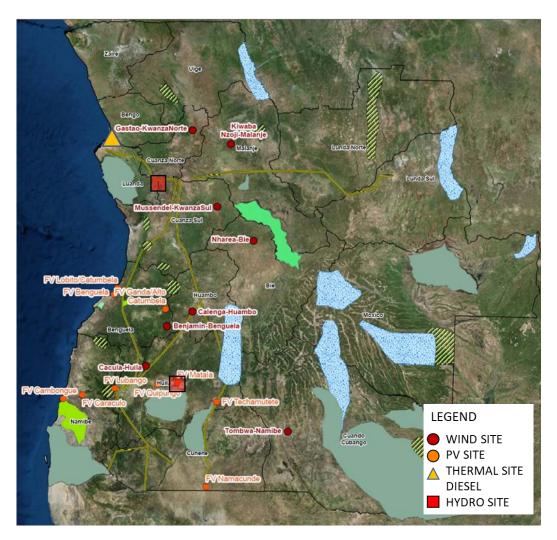
Score (E.C.I)*	Evaluation Criteria	
- 3	Significant direct-negative impact is expected, and miti	igation cannot be expected.
-2	Significant direct-negative impact is expected, and miti	igation is expected.
-1	Minor direct-negative impact is expected, and mitigation	on is expected.
0	Minor indirect-negative impact is expected, and mitigate	tion is not needed.
*: Enviro	nmental Contribution Indicator	(Source: JICA Survey Team)

11.6 Results of SEA

(1) Power development candidate sites selected for evaluation of environmental impacts through SEA

Studies on environmental and social considerations were carried out in consultation with MINEA

using the above scoping and evaluation method for a total of 22 potential development candidates, as shown in the table below.


As no candidate sites for hydropower projects were nominated by MINEA, the environmental evaluation (scoring) for hydropower was done by evaluating the impacts of existing hydropower plants on nature, society, and the global environment, in lieu of conducting SEA evaluations on candidate sites. The environmental impacts when implementing hydropower development projects in Angola were assumed accordingly.

Type of Generation	Name of Project	Location	Capacity (MW)
Underground	CAMBAMBE	Kwanza Norte	960
Hydropower	MATALA	Huila	40.8
Sub total	2		1000.8
Thermal Power (LNG / Heavy-Oil)	CIMANGOLA	Luanda	212
Sub total	1		212
	BENJAMIN	Benguela	52
	CACULA	Huila	88
	CALENGA	Huambo	84
Wind Power	GASTAO	Kwanza Norte	30
willd FOwer	KIWABANZOJI I	Malanje	62
	MUSSENDE I	Kwanza Sul	36
	NHAREA	Bie	36
	TOMBWA	Namibe	100
Sub total	8		488
	BENGUELA	Benguela	10
	CARACULO	Namibe	10
	CAMBONGUE	Namibe	10
	GANDA/ALTOCATUMBELA	Benguela	10
Solar Power	LOBITO/CATUMBELA	Benguela	10
Solai Fowel	LUBANGO	Huila	10
	MATALA	Huila	10
	QUIPUNGO	Huila	10
	NAMACUNDE	Cunene	10
	TECHAMUTETE	Huila	10
Sub total	9		90
Diamaga	1 Biomass Project,	Huila	3
Biomass	(No Project Name as of 2018)		
Sub total	1		3
Total	22		

 Table 11-11
 Power Development Candidate Sites for SEA

(2) Locations of the candidate power development sites

The map below shows the locations of the candidate sites.

(Source: ERM Report)

Figure 11-6 Locations of the Generation Power Site

(3) Evaluation of each project from social and environmental viewpoints

(a) Hydropower Plant

(a)-1. CAMBAMBE Hydropower Plant

- Natural Environment
 - There are 4 types of vegetation zone in the site area: (1) Dry savannah with more or less scattered shrubs and trees; (2) Forests of tall, semi-deciduous trees with many climbing plants; (3) Communities of aquatic plants, and (4) plant communities from the cliff margins. Some of the floral species in these zones have low abundance, so any small change could potentially lead to species extinct around the site area.
 - The vegetation is expected to change near the river banks due to the change of the river flow downstream of the dam.

- ➤ A change in the migratory patterns of the mammals is expected due to the scarcity of existing habitats.
- There is some concern that excavation and construction for access roads and transmission lines will lead to soil erosion.
- Social Environment
 - > There are only a few number of resettlements of rural people.
 - > The area is characterized by the presence of well-developed industrial facilities and residential areas.
 - \triangleright No heritage resources are expected to be affected by the project.

Figure 11-7 Site for CAMBAMBE Hydropower Plant

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	-1.0	Drilling and construction of access roads may cause erosion, but mitigation measures are possible.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	-1.0	Soil erosion is assumed, but mitigation measures (embankment, planting on the cut surface) are possible.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	-1.0	There is concern about the influence on wetlands etc in the downstream area, but mitigation measures are possible.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Dust flight is assumed, but it is temporary, there is no emission of pollutants at the time of operation phase.
Natural	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
	6	Waste	Domestic or industrial waste from facilities	0.0	Waste is properly processed through 3R (Reduce, Reuse, Recycle) rule.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	-2.0	Lost of some species of plant is assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-1.0	There is concern about the influence on wetlands etc in the downstream area, but mitigation measures are possible. The flight route of birds has not been confirmed.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
			tor to Natural Resources	-0.60	not assumed.
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	-1.0	Resettlement of some houses is assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	-1.0	Competition of water use due to intake from rivers in the downstream area is assumed, but mitigation measures (maintenance release) are possible.
	5	Landscape	Destruction of landscape	0.0	Impacts that require mitigation measures are not assumed.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.33	
Global	1	Green House Gas	Emission of CO ₂	0.0	CO2 will be produced from construction work although the emission is limited and negligible on climate change.
		Impact Indica	ator to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.31	

 Table 11-12
 Evaluation Results on the CAMBAMBE HPP

(a)-2. MATALA Hydropower Plant

i) Following is a summary of the main features of the natural and social environments identified through the SEA survey.

- Natural Environment
 - The site is located in the proximity of an urban area with lots of human activities. Aquatic plants, scattered shrubs and trees, and tall and dense trees close to river banks are expected to be found in certain areas where no human activities take place (e.g.: crops).
 - ➤ No substantial change is expected in the migratory patterns of the mammals due to small effects on the existing habitats.
 - ➢ Hydropower activity could potentially affect species vulnerability by changing the ecosystem.
 - > No significant noise impacts on the social environment are expected.
- Social Environment
 - \succ There are some rural resettlements in the area.
- ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Impacts that require mitigation measures are not assumed.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	-1.0	There is concern about the influence on aquatic plants etc in the downstream area, but mitigation measures are possible. Dust night is assumed, but it is temporary,
	4	Quality of Air	Emission of pollutants from facilities	0.0	there is no emission of pollutants at the time of
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	0.0	Waste is properly processed through 3R (Reduce, Reuse, Recycle) rule.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	-1.0	Lost of some species of plant is assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	0.0	There is concern about the influence on wetlands etc in the downstream area, but mitigation measures are possible. The flight route of birds has not been confirmed.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.20	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	-1.0	Resettlement of some houses is assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	-1.0	Competition of water use due to intake from rivers in the downstream area is assumed, but mitigation measures (maintenance release) are possible.
	5	Landscape	Destruction of landscape	0.0	Impacts that require mitigation measures are not assumed.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	licator to Social Resources	-0.33	
Global	1	Green House Gas	Emission of CO ₂	0.0	CO2 will be produced from construction work although the emission is limited and negligible on climate change.
		Impact Indica	ator to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.17	

 Table 11-13
 Evaluation Results on the MATALA HPP

(b) Thermal Power

(b)-1. CIMANGOLA Thermal Power Plant

CIMANGOLA thermal power plant was only selected as a thermal power plant candidate site for SEA from MINEA.

i) Following is a summary of the main features of the natural and social environments identified through the SEA survey.

- Natural Environment
 - ➤ The project site is located in a highly populated area with intense traffic from a combination of industrial-use and specified-use vehicles of nearby roads. Accordingly, there are no significant natural resources to be protected.
 - The predominant soil type in the area is silt soil (0-10% clay), so dry cracks form during dry season. The soil contains a brown expansive clay of silky sand, so soil erosion is a concern during wet season.
 - > There is a risk of contamination of air quality by emissions of SO2, NO2 and PM10.
 - Negative impact from the generation of noise above the recommended standards is expected around the border between the living quarter and proposed site area.
- Social Environment
 - There is concern that water resources may be contaminated if groundwater is pumped up and used as cooling water.
 - \blacktriangleright There are some rural resettlements.
 - Global Environment
 - > Carbon dioxide emissions are expected even after introduction of mitigation measures.

Figure 11-8 Site for CIMANGOLA Thermal Power Plant

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

Group	No.	Item	Indicator	Score	Basis of Score
oroup		Topography &			Impacts that require mitigation measures are
-	1	Geology	Destruction of ground	0.0	not assumed.
			Erosion, Disposal, Leakage of		Soil contamination due to the loss of oil from
	2	Soil	toxic substances, Peeling off of top	-2.0	treatment facilities and pipeline installation is
			soil		expected, but mitigation measures are possible.
			Dellational and a strength services (Rising in the water temperature is expected due
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	-2.0	to a large amount of thermal effluent to the ocean or river, and in the case of large
			sedimentation of toxic substances		capacity, mitigation measures are impossible.
·					Pollution of air quality (NO ₂ , SO ₂ , PM 10,
					etc.) due to smoke is expected; mitigation
	4	Quality of Air	Emission of pollutants from	-2.0	measures (introduction of high combustion
	4	Quality of All	facilities	-2.0	efficiency boiler, installation of
					denitration/desulfur, dustproof devices) are
			NT-1		possible.
Natural	5	Noise/Vibration	Noise/vibration from facilities or operation activities	-1.0	Noise is assumed, but mitigation measures (construction in remote areas) are possible.
			Domestic or industrial waste from		Impacts that require mitigation measures are
	6	Waste	facilities	0.0	not assumed.
	7	Subsidence	Use of underground water by	0.0	Impacts that require mitigation measures are
	,	Subsidence	facilities	0.0	not assumed.
					Rising in the water temperature is expected due to a large amount of thermal effluent to the
			Deforestation (including		ocean or river, and the influence on plants
	8	Flora	mangroves), peeling of vegetation, changing of the flora ecosystem	-2.0	(mangrove, marine plants) is assumed. In the
					case of large capacity, mitigation measures are
					impossible.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-2.0	Rising in the water temperature is expected due
					to a large amount of thermal effluent to the ocean or river, and in the case of large
					capacity, mitigation measures are impossible.
-	10	Natural Protected	Impacts on strict natural protected	0.0	Impacts that require mitigation measures are
	10	Areas	areas such as National Parks	0.0	not assumed.
		Impact Indicat	tor to Natural Resources	-1.10	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	-1.0	Resettlement of some houses is assumed.
•	2	Ethnic minorities /	Adverse impacts on vulnerable	0.0	Impacts that require mitigation measures are
	2	Indigenous people	people	0.0	not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are
-	-				not assumed.
Social					Competition for water use due to intake from peripheral rivers as cooling water is assumed,
	4	Water Use	Water use conflict	-1.0	but mitigation measures (introduction of air
					cooling system) are possible.
	F	Landsson-	Destruction of log deserve	0.0	Impacts that require mitigation measures are
	5	Landscape	Destruction of landscape	0.0	not assumed.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.33	
Global	1	Green House Gas	Emission of CO ₂	-2.0	CO ₂ emissions is expected.
		Impact Indica	tor to Global Environment	-2.00	
			Impact Indicator	-1.14	
		Comprehensive	Impact Indicator	-1.14	

 Table 11-14
 Evaluation Results on the CIMANGOLA Thermal Power Plant

(c) Wind Power

(c)-1. BENJAMIN Wind Power

- Natural Environment
 - > The area is characterized mainly by Savannah and bare land.
 - > There is concern about a cliff area with a probable concentration of migratory birds.
 - > Operational noise may negatively impact agricultural houses nearby.
- Social Environment
 - ➤ A farm is located within the buffer area at a distance of around 1 km. Compensation might be required, considering the current land use.

Figure 11-9 Site for BENJAMIN Wind Power Plant

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

1	avi	CII-IS Evalu	ation Results on the DENJ		
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Impacts that require mitigation measures are not assumed.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	-1.0	Noise is assumed, but mitigation measures (construction in remote areas) are possible.
Natural	6	Waste	Domestic or industrial waste from facilities	0.0	Impacts that require mitigation measures are not assumed.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-3.0	The occurrence of bird strike accident is assumed. Even adopting mitigation measures to avoid migratory birds' flight routes, it is difficult to eradicate such an accident.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.40	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	-1.0	Land competition is assumed, but mitigation (securing of substitute) is possible.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear in the wilderness, etc., so there is concern about serious influence on the surrounding environment, and mitigation measures are difficult.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.66	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ator to Global Environment	0.00	

 Table 11-15
 Evaluation Results on the BENJAMIN Wind Power Plant

(c)-2. CACULA Wind Power

- Natural Environment
 - The area is characterized mainly by forests and agricultural patches. Construction yards and access roads will alter the landscape settings.
 - > There is concern about a cliff area with a probable concentration of migratory birds.
 - Reptiles, rodents and other species may be found in the area and could be affected during the installation of the turbines and associated infrastructure.
 - > Operational noise may negatively impact agricultural houses nearby.
- Social Environment
 - ➤ A farm is located within the buffer area within a range of about 1 km. Compensation might be required, considering the current land use.

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

	<u>1 au</u>	ne 11-10 Eval	uation Results on the CAC		
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Impacts that require mitigation measures are not assumed.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	-1.0	Noise is assumed, but mitigation measures (construction in remote areas) are possible.
Natural	6	Waste	Domestic or industrial waste from facilities	0.0	Impacts that require mitigation measures are not assumed.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-3.0	The occurrence of bird strike accident is assumed. Even adopting mitigation measures to avoid migratory birds' flight routes, it is difficult to eradicate such an accident.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.40	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	-1.0	resettlement might be required within 1Km.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	-1.0	Land competition is assumed, but mitigation (securing of substitute) is possible.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear in the wilderness, etc., so there is concern about serious influence on the surrounding environment, and mitigation measures are difficult.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.83	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
				0.00	
		Impact Indica	ator to Global Environment	0.00	

 Table 11-16
 Evaluation Results on the CACULA Wind Power Plant

(c)-3. CALENGA Wind Power

- Natural Environment
 - The area is characterized by savannah and agricultural patches in the north, while the south is mostly covered by forest.
 - > The site area is situated in Serra do Uendelongo. There is concern about a cliff area with a probable concentration of migratory birds.
- > There are expected to be corridors for birds of prey in the site area.
- Social Environment
 - There is no agricultural land to be compensated in the buffer area within an approximately 1 km range.

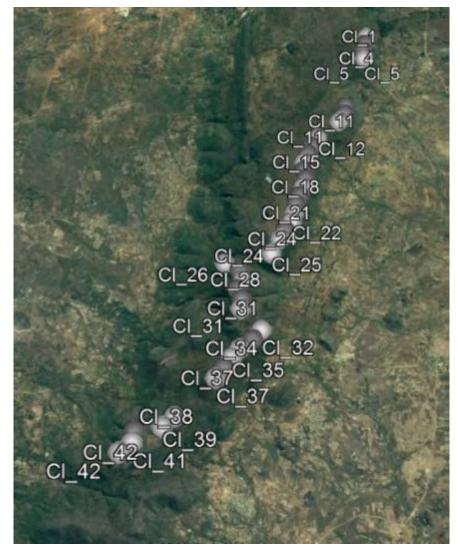


Figure 11-10 Site for CALENGA Wind Power Plant

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

	No.	Item	Indicator	Score	Basis of Score
Gloup	INO.		Indicator	Scole	
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Impacts that require mitigation measures are not assumed.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	0.0	Impacts that require mitigation measures are not assumed.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-3.0	The occurrence of bird strike accident is assumed. Even adopting mitigation measures to avoid migratory birds' flight routes, it is difficult to eradicate such an accident.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.30	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	-1.0	Land competition is assumed, but mitigation (securing of substitute) is possible.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear in the wilderness, etc., so there is concern about serious influence on the surrounding environment, and mitigation measures are difficult.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.66	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.32	

 Table 11-17
 Evaluation Results on the CALENGA Wind Power Plant

(c)-4. GASTAO Wind Power

- Natural Environment
- The area is characterized by savannah and agricultural patches in the north, while the south is mostly covered by forest.
- > There is concern about a site area with a probable concentration of migratory birds.
- Social Environment
- > There are no agricultural lands or houses to be compensated in the buffer area within an approximately 1 km range.

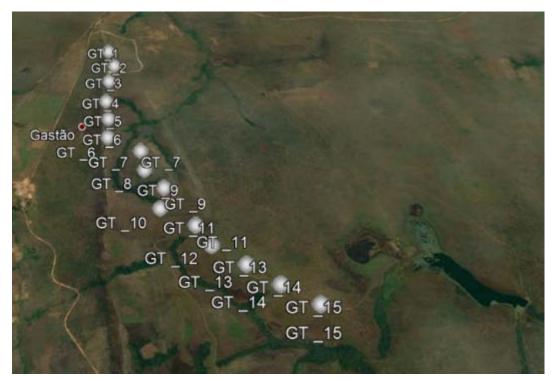


Figure 11-11 Site for GASTAO Wind Power Plant

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

		1 able 11-10	Evaluation Results on the	UADI	
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Impacts that require mitigation measures are not assumed.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	0.0	Impacts that require mitigation measures are not assumed.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-3.0	The occurrence of bird strike accident is assumed. Even adopting mitigation measures to avoid migratory birds' flight routes, it is difficult to eradicate such an accident.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.30	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear in the wilderness, etc., so there is concern about serious influence on the surrounding environment, and mitigation measures are difficult.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	licator to Social Resources	-0.50	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ator to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.26	

 Table 11-18
 Evaluation Results on the GASTAO Wind Power Plant

(c)-5. KIWABANZOJI I Wind Power

- Natural Environment
 - > The area is characterized mainly by savannah, with some part covered by forests.
 - The nearest protected area is located 40 km east of the site (Milando Special Reserve). No project impacts on the reserve are expected.
- Social Environment
 - \succ There are 118 dwellings in the area.
 - Agricultural lands are located in the buffer area within a range of around 1 km. Compensation might be required, considering the current land use. Influences of the project on the agricultural lands can be avoided by modifying certain design aspects (place of installation, etc.)

Kn_l_31 Kn_l_29	
Kn_l_27	
Kn_L_25 Kn_L_23	
Kn_l_22 Kn_l_20	
Kn_l_18	
Kn_l_16	
Kn_l_14 Kn_l_13 Kn_l_11	
Kn_l_9	
Kn_l_7 Kn_l_6 Kn_l_5 Kn_l_3 Kn_l_4 Kn_l_2 Kn_l_1	and the state

Figure 11-12 Site for KIWABANZOJI I Wind Power Plant

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

Group	No.	Item	Indicator	Score	Basis of Score
Natural	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Impacts that require mitigation measures are not assumed.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	-2.0	Windmill noise is assumed, but mitigation measures (construction in remote areas) are possible.
	6	Waste	Domestic or industrial waste from facilities	0.0	Impacts that require mitigation measures are not assumed.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-3.0	The occurrence of bird strike accident is assumed. Even adopting mitigation measures to avoid migratory birds' flight routes, it is difficult to eradicate such an accident.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.50	
Social	1	Resettlement	Involuntary resettlement / loss of means of livelihood	-2.0	A serious negative direct impact due to resettlement of residents is assumed, but mitigation measures (recovery of living base after relocation, securing alternative place etc.) are possible.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear in the wilderness, etc., so there is concern about serious influence on the surrounding environment, and mitigation measures are difficult.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indicator to Social Resources		-0.83	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Global Environment	0.00	
Comprehensive Impact Indicator				-0.44	

Table 11-19Evaluation Results on the KIWABANZOJI I Wind Power Plant

(c)-6. MUSSENDE I Wind Power

- Natural Environment
 - > There are mosaic agriculture lands located within 500 m from the site.
 - The nearest protected area (Luanda Integral Nature Reserve) is located 40 km east from the site. No project impacts on the reserve are expected.
- Social Environment
 - > There are villages in the south part of the site area. Negative impact from noise is expected.
 - Agricultural lands are located within the 500 m buffer zone of the site area. Resettlement and compensation may be required.

Ms_I_18 Ms_I_17	
Ms_I_16Ms_I_15	
Ms_I_12 Ms_I_12	
IVIS_1_12	
Ms_l_11 Ms_l_10	1/8 5
Ms_l_9	JAN TO A
Ms_l_7	and a state of
Ms_l_6 N	ls_1_5
	Ms_1_4
Ms_l_2	Ms_I_3
Ms_l	1_1
the second s	
Same in the second second	

Figure 11-13 Site for MUSSENDE I Wind Power Plant

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

Group	No.	Item	Indicator	Score	Basis of Score
Gloup	INO.		Indicator	Scole	
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Impacts that require mitigation measures are not assumed.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	-2.0	Windmill noise is assumed, but mitigation measures (construction in remote areas) are possible.
Natural	6	Waste	Domestic or industrial waste from facilities	0.0	Impacts that require mitigation measures are not assumed.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-3.0	The occurrence of bird strike accident is assumed. Even adopting mitigation measures to avoid migratory birds' flight routes, it is difficult to eradicate such an accident.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.50	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	-2.0	A serious negative direct impact due to resettlement of residents is assumed, but mitigation measures (recovery of living base after relocation, securing alternative place etc.) are possible.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
Social	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear in the wilderness, etc., so there is concern about serious influence on the surrounding environment, and mitigation measures are difficult.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.83	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ator to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.44	

 Table 11-20
 Evaluation Results on the MUSSENDE I Wind Power Plant

(c)-7. NHAREA Wind Power

- Natural Environment
 - > The site area is covered by dense forest with a high potential for rich biodiversity.
 - The nearest protected area (Luanda Integral Nature Reserve) is located 40 km east of the site. No project impacts on the reserve are expected.
- Social Environment
 - > There are no houses near the project site.
 - Agricultural lands are located within the 500 m buffer zone of the site area. Resettlement and compensation may be required.

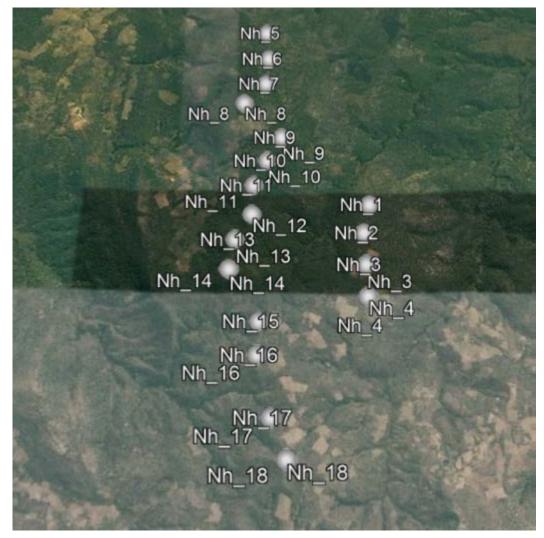


Figure 11-14 Site for NHAREA Wind Power Plant

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

		Table 11-21	Evaluation Results on the	INIAN	
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Impacts that require mitigation measures are not assumed.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	0.0	Impacts that require mitigation measures are not assumed.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	-1.0	Impacts to the forest near project site is assumed, but mitigation measures will be possible.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-3.0	The occurrence of bird strike accident is assumed. Even adopting mitigation measures to avoid migratory birds' flight routes, it is difficult to eradicate such an accident.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.40	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	-1.0	Competition for land use of agriculture is assumed, but mitigation measures (securing alternative site) are possible.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear in the wilderness, etc., so there is concern about serious influence on the surrounding environment, and mitigation measures are difficult.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	licator to Social Resources	-0.66	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ator to Global Environment	0.00	

 Table 11-21
 Evaluation Results on the NHAREA Wind Power Plant

(c)-8. TOMBWA Wind Power

- Natural Environment
 - The project area is located in the Namibe Desert near the coast. Migratory birds and some birds of prey (e.g.: Circaetus pectoral) live there.
 - > Typical flora species in the site area include Stoebe cinerea and several sparse grasses common among the dry areas of the desert.
 - \succ The project is located inside the Iona National Park.
- Social Environment
 - > There are no houses or land for agriculture near the project site.

Figure 11-15 Site for TOMBWA Wind Power Plant

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

			Evaluation Results on the 1	UNID	
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Impacts that require mitigation measures are not assumed.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	0.0	Impacts that require mitigation measures are not assumed.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	-1.0	Impacts to the forest near project site is assumed, but mitigation measures will be possible.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-3.0	The occurrence of bird strike accident is assumed. Even adopting mitigation measures to avoid migratory birds' flight routes, it is difficult to eradicate such an accident.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	-3.0	Influence on the flight and ecology of bird species' habitats in protected areas is assumed.
		Impact Indica	tor to Natural Resources	-0.70	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear in the wilderness, etc., so there is concern about serious influence on the surrounding environment, and mitigation measures are difficult.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.50	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ator to Global Environment	0.00	
		Comprohensive	Impact Indicator	-0.40	

 Table 11-22
 Evaluation Results on the TOMBWA Wind Power Plant

(d) Solar Power Plant

(d)-1. BENGUELA Solar Power Plant

- Natural Environment
 - > The site area is covered with grass, small shrubs, and meadows.
 - > There is low possibility of soil erosion, since the terrain of the site is flat.
 - > Batteries will also be installed for use during operations, so industrial waste is expected.
- Social Environment
 - \blacktriangleright There are several houses around the site.

Figure 11-16 Site for BENGUELA Solar Power Plant

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

		Table 11-25 E	valuation Results on the D	LIUUU	
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Impacts that require mitigation measures are not assumed.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	-2.0	A large amount of waste (solar cell modules, storage batteries, power conditioners, etc.) is assumed after reaching the end of its life, but mitigation measures (promotion of 3R) are possible.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	-2.0	There is a concern about serious impacts on vegetation due to the bare ground under the panels, but mitigation measures (planting of shade-tolerant plants under the panels) are possible.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-1.0	There is a concern about the influence of large- scale facilties on the movement route of animals, but mitigation measures are possible.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.50	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	-1.0	A negative direct impact due to resettlement of residents is assumed, but mitigation measures (securing alternative place etc.) are possible.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear at the foot of mountains, in the wilderness, etc., and there is concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) are possible.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.66	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ntor to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.38	
		·			

 Table 11-23
 Evaluation Results on the BENGUELA Solar Power Plant

(d)-2. CARACULO Solar Power Plant

- Natural Environment
 - > The site area is a suitable habitat for important reptiles and small rodents.
 - There is a possibility of soil erosion due to excavation and construction for access roads and transmission lines.
 - > Batteries will also be installed for use during operations, so industrial waste is expected.
- Social Environment
 - \blacktriangleright There are no houses around the site.



Figure 11-17 Site for CARACULO Solar Power Plant

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

			valuation Results on the Ch		
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	-1.0	Soil collapse, top soil release, and soil erosion is assumed, but mitigation measures (paving, stabilization of foundation soil by gravel bed) are possible.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	-2.0	A large amount of waste (solar cell modules, storage batteries, power conditioners, etc.) is assumed after reaching the end of its life, but mitigation measures (promotion of 3R) are possible.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	-2.0	There is a concern about serious impacts on vegetation due to the bare ground under the panels, but mitigation measures (planting of shade-tolerant plants under the panels) are possible.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-1.0	There is a concern about the influence of large- scale facilties on the movement route of animals, but mitigation measures are possible.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.60	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear at the foot of mountains, in the wilderness, etc., and there is concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) are possible.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.50	
	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
Global					
Global		Impact Indica	ntor to Global Environment	0.00	

 Table 11-24
 Evaluation Results on the CARACULO Solar Power Plant

(d)-3. CAMBOUNGUE Solar Power Plant

i) Following is a summary of the main features of the natural and social environments identified through the SEA survey.

- Natural Environment
 - > The site is located in a desert area devoid of natural vegetation.
 - There is a possibility of soil erosion due to excavation and construction for access roads and transmission lines.
 - > Batteries will also be installed for use during operations, so industrial waste is expected.
- Social Environment
 - ➤ A port city (Sacomar) is located about 3 km west of the site, but no project impacts are expected.

Figure 11-18 Site for CAMBOUNGUE Solar Power Plant

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

Group	No.		Indicator		
Group	10.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	-1.0	Soil collapse, top soil release, and soil erosion is assumed, but mitigation measures (paving, stabilization of foundation soil by gravel bed) are possible.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	-2.0	A large amount of waste (solar cell modules, storage batteries, power conditioners, etc.) is assumed after reaching the end of its life, but mitigation measures (promotion of 3R) are possible.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	-2.0	There is a concern about serious impacts on vegetation due to the bare ground under the panels, but mitigation measures (planting of shade-tolerant plants under the panels) are possible.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-2.0	There is a concern about the influence of large- scale facilties on the fling route of migratory birds.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.70	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear at the foot of mountains, in the wilderness, etc., and there is concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) are possible.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.50	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		T (T 1)		0.00	
		Impact Indica	ator to Global Environment	0.00	

 Table 11-25
 Evaluation Results on the CAMBOUNGUE Solar Power Plant

(d)-4. GANDA/ALTOCATUMBELA Solar Power Plant

i) Following is a summary of the main features of the natural and social environments identified through the SEA survey.

- Natural Environment
 - > The site area is suitable for habitats of important reptiles and small rodents.
 - > The site is a savanna zone with agricultural land patches mixed in.
 - There is a possibility of soil erosion due to excavation and construction for access roads and transmission lines.
 - > Batteries will also be installed for use during operations, so industrial waste is expected.
- Social Environment
 - Some of the agricultural lands may be affected. The land use may change and compensation may be required. Some of the possible influences during project implementation can be avoided by modifying design aspects (place of installation, etc.)

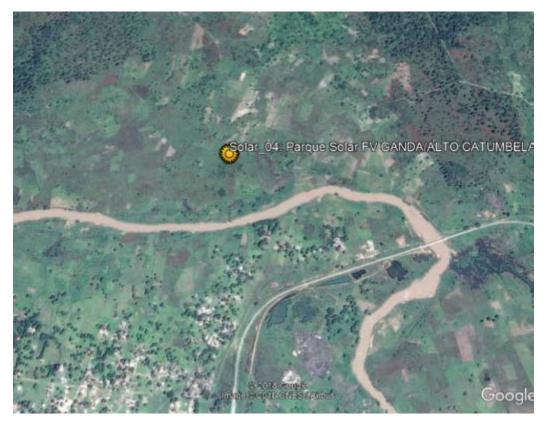


Figure 11-19 Site for GANDA/ALTOCATUMBELA Solar Power Plant

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	-1.0	Soil collapse, top soil release, and soil erosion is assumed, but mitigation measures (paving, stabilization of foundation soil by gravel bed) are possible.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	-2.0	A large amount of waste (solar cell modules, storage batteries, power conditioners, etc.) is assumed after reaching the end of its life, but mitigation measures (promotion of 3R) are possible.
-	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	-2.0	There is a concern about serious impacts on vegetation due to the bare ground under the panels, but mitigation measures (planting of shade-tolerant plants under the panels) are possible.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-1.0	There is a concern about the influence of large- scale facilties on the movement route of animals, but mitigation measures are possible.
-	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indicat	tor to Natural Resources	-0.60	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear at the foot of mountains, in the wilderness, etc., and there is concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) are possible.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.50	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.36	

 Table 11-26
 Evaluation Results on the GANDA/ALTOCATUMBELA Solar Power Plant

(d)-5. LOBITO/CATUMBELA Solar Power Plant

- Natural Environment
 - > The site is located in a desert area, but there are residential areas around the site.
 - There is a possibility of soil erosion due to excavation and construction for access roads and transmission lines.
 - > Batteries will also be installed for use during operations, so industrial waste is expected.
- Social Environment
 - Some of the grass fields may be affected, possibly necessitating a change in land use and compensation. Some of the influences during project implementation can be avoided by modifying design aspects (place of installation, etc.)

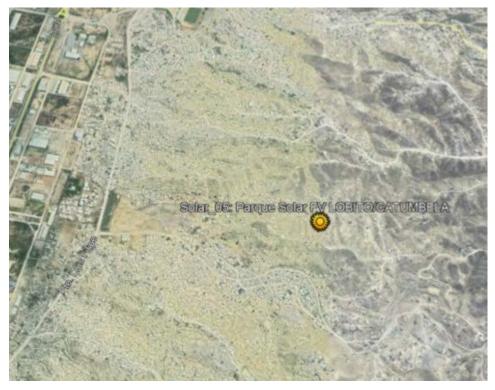


Figure 11-20 Site for Solar LOBITO/CATUMBELA Power Plant

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	-1.0	Soil collapse, top soil release, and soil erosion is assumed, but mitigation measures (paving, stabilization of foundation soil by gravel bed) are possible.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	-2.0	A large amount of waste (solar cell modules, storage batteries, power conditioners, etc.) is assumed after reaching the end of its life, but mitigation measures (promotion of 3R) are possible.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	0.0	Impacts that require mitigation measures are not assumed.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.30	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
boom	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear at the foot of mountains, in the wilderness, etc., and there is concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) are possible.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.50	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.26	

 Table 11-27
 Evaluation Results on the LOBITO/CATUMBELA Solar Power Plant

(d)-6. LUBANGO Solar Power Plant

- Natural Environment
 - > The site area is suitable for habitats of important reptiles and small rodents.
 - \triangleright The site is located in a desert area, with no residential areas situated nearby.
 - There is a possibility of soil erosion due to excavation and construction for access roads and transmission lines.
 - > Batteries will also be installed for use during operations, so industrial waste is expected.
- Social Environment
 - Some of agricultural lands may be affected, possibly necessitating a change in the land use and compensation. Some of the influences during project implementation can be avoided by modifying design aspects (place of installation, etc.)

Figure 11-21 Site for LUBANGO Solar Power Plant

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	-1.0	Soil collapse, top soil release, and soil erosion is assumed, but mitigation measures (paving, stabilization of foundation soil by gravel bed) are possible.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	-2.0	A large amount of waste (solar cell modules, storage batteries, power conditioners, etc.) is assumed after reaching the end of its life, but mitigation measures (promotion of 3R) are possible.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-1.0	There is a concern about the influence of large- scale facilties on the movement route of animals, but mitigation measures are possible.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.40	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are assumed, but mitigation measures are possible.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear at the foot of mountains, in the wilderness, etc., and there is concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) are possible.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.50	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ator to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.30	

 Table 11-28
 Evaluation Results on the LUBANGO Solar Power Plant

(d)-7. MATALA Solar Power Plant

- Natural Environment
 - > The site area is suitable for habitats of important reptiles and small rodents.
 - There is a possibility of soil erosion due to excavation and construction for access roads and transmission lines.
 - > Batteries will also be installed for use during operations, so industrial waste is expected.
- Social Environment
 - Some of the agricultural lands may be affected, possibly necessitating a change in the land use and compensation. Some of the influences during project implementation can be avoided by modifying design aspects (place of installation, etc.).

Figure 11-22 Site for MATALA Solar Power Plant

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

		Table 11-29	Evaluation Results on the F		
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	-1.0	Soil collapse, top soil release, and soil erosion is assumed, but mitigation measures (paving, stabilization of foundation soil by gravel bed) are possible.
-	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	0.0	Impacts that require mitigation measures are not assumed.
-	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	-2.0	A large amount of waste (solar cell modules, storage batteries, power conditioners, etc.) is assumed after reaching the end of its life, but mitigation measures (promotion of 3R) are possible.
-	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
-	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	-1.0	There is a concern about the influence of large scale facilties on the movement route of animals, but mitigation measures are possible.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.40	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
a	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear at the foot of mountains, in the wilderness, etc., and there is concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) are possible.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.50	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ator to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.30	

 Table 11-29
 Evaluation Results on the MATALA Solar Power Plant

(d)-8. QUIPUNGO Solar Power Plant

- Natural Environment
 - The area is an agricultural land cultivated in a mosaic pattern, with 84 residences situated in the 1 km buffer area around the site.
 - > A water resource (Cuanhama pond) is located nearby.
 - > Batteries will also be installed for use during operations, so industrial waste is expected.
- Social Environment
 - > The 84 houses in the surrounding area may be affected by the installation of panels.
 - Some of agricultural lands may be affected, possibly necessitating a change in the land use and compensation.

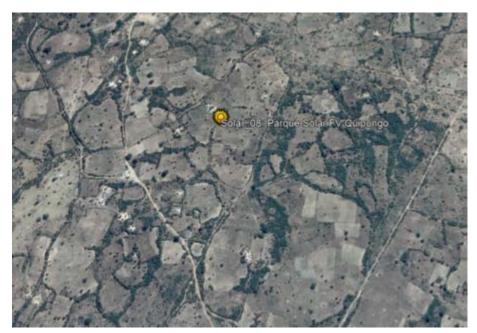


Figure 11-23 Site for QUIPUNGO Solar Power Plant

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

			valuation Results on the Q		
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Soil collapse, top soil release, and soil erosion is assumed, but mitigation measures (paving, stabilization of foundation soil by gravel bed) are possible.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	-1.0	Occurrence of muddy flow due to soil erosion is assumed, but mitigation measures (construction of adjustment reservoirs and installation of drainage channels) are possible.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	-2.0	A large amount of waste (solar cell modules, storage batteries, power conditioners, etc.) is assumed after reaching the end of its life, but mitigation measures (promotion of 3R) are possible.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	0.0	There is a concern about the influence of large- scale facilties on the movement route of animals, but mitigation measures are possible.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.30	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	-1.0	The use of agricultural land may be restricted.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear at the foot of mountains, in the wilderness, etc., and there is concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) are possible.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.66	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ntor to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.32	

 Table 11-30
 Evaluation Results on the QUIPUNGO Solar Power Plant

(d)-9. NAMACUNDE Solar Power Plant

i) Following is a summary of the main features of the natural and social environments identified through the SEA survey.

- Natural Environment
 - > The area is primarily forested and some parts are covered with savanna.
 - A water source (Cuanhama pond) is located nearby.
 - > The site area is suitable for habitats of important reptiles and small rodents.
 - > Storage batteries will be installed for use during operations, so industrial waste is expected.
- Social Environment
 - Agricultural lands are located in the surrounding area, and impacts are assumed. Some of the influences during project implementation can be avoided by modifying design aspects (place of installation, etc.).



Figure 11-24 Site for NAMACUNDE Solar Power Plant

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

1 Geology Destruction of ground 0.0 not assumed. - 2 Soil Errosion, Disposal, Leakage of toxic substances, Peeling off otop soil 0.0 Soil collapse, top soil release, and soil erros is assumed, but mitigation measures (pavir stabilization of foundation soil by gravel ba are possible. 3 Quality of Water Pollution due to water-diversion / sedimentation of toxic substances -1.0 Cocurrence of muddy flow due to soil error is assumed, but mitigation measures (construction of adjustment reservoirs and installation of drainage channels) are possible. 4 Quality of Air Emission of pollutants from facilities 0.0 Impacts that require mitigation measures a not assumed. 5 Noise/Vibration Noise/Vibration from facilities 0.0 Impacts that require mitigation measures a not assumed. 6 Waste Domestic or industrial waste from facilities 0.0 Impacts that require mitigation measures a not assumed. 7 Subsidence Use of underground water by facilities 0.0 Impacts that require mitigation measures a not assumed. 8 Flora Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem 0.0 Impacts that require mitigation measures a not assumed. 9	G			aluation Results on the NA		
I Geology Destruction of ground 0.0 not assumed. 2 Soil Erosion. Disposal. Leakage of toxic substances, Peeling off of top soil Soil collapse, top soil release, and soil eros substances, Peeling off of top substances, Peeling off of top Soil collapse, top soil release, and soil eros substances, Peeling off of top 3 Quality of Water Pollution due to water-diversion / scdimentation of toxic substances Soil collapse, top soil release, and soil eros is assumed, but mitigation measures (construction of adjustment reservoirs and installation of drainage channels) are possible. 4 Quality of Air Emission of pollutants from facilities 0.0 Impacts that require mitigation measures a not assumed. 5 Noise/Vibration Noise/vibration from facilities or operation activities 0.0 Impacts that require mitigation measures a not assumed. 7 Subsidence Use of underground water by facilities 0.0 Impacts that require mitigation measures a not assumed. 8 Flora Deforestation (including magracys), peeling of vegetation, changing of the flora ecosystem ingratory fish or birds 0.0 Impacts that require mitigation measures a not assumed. 9 Fauna/Fish/Coral Impacts on strict natural protected Areas 0.0 Impacts that require mitigation measures a not assumed.<	Group	No.		Indicator	Score	
2 Soil Erosion, Disposal, Leakage of toxis ubstances, Peeling off of top soil 0.0 is assumed, but mitigation measures (pavi) stabilization of foundation soil by gravel be are possible. 3 Quality of Water Pollution due to water-diversion / sedimentation of toxic substances -1.0 is assumed, but mitigation measures (pavi) as a sumed, but mitigation measures (pavi) as a sumed, but mitigation measures and installation of drainage channels) are possible. 4 Quality of Air Emission of pollutants from facilities or operation activities 0.0 Impacts that require mitigation measures a not assumed. 5 Noise/Vibration Domestic or industrial waste from facilities 0.0 Impacts that require mitigation measures a not assumed. 7 Subsidence Use of underground water by facilities 0.0 Impacts that require mitigation measures a not assumed. 8 Flora Deforestation (including mangroves), peeling of the fora cossystem facilities 0.0 Impacts that require mitigation measures a not assumed. 9 Fauna/Fish/Coral Destruction of animal hastar/cossystems, adverse on migratory fish or birds 0.0 Impacts that require mitigation measures a not assumed. 1 Natural Protected Impacts nat require mitigation measures a not assumed. 0.0 Impacts that requir		1		Destruction of ground	0.0	
3 Quality of Water Pollution due to water-diversion / sedimentation of toxic substances -1.0 is assumed, but mitigation measures (construction of adjustment reservoirs and installation of drainage channels) are possible 4 Quality of Air Emission of pollutants from facilities 0.0 Impacts that require mitigation measures a not assumed. 5 Noise/Vibration Noise/vibration from facilities or operation activities 0.0 Impacts that require mitigation measures a not assumed. 6 Waste Domestic or industrial waste from facilities 0.0 Impacts that require mitigation measures a not assumed. 7 Subsidence Use of underground water by facilities 0.0 Impacts that require mitigation measures a not assumed. 8 Flora Deforestation (including mangroves), peeling of vegetation, changing of the flora cosystem 0.0 Impacts that require mitigation measures a not assumed. 9 Faund/Fish/Coral Impacts on strict natural protected Areas 0.0 Impacts that require mitigation measures a not assumed. 10 Natural Protected Impacts on valuerable pople 0.0 Impacts that require mitigation measures a not assumed. 2 Ethnic mionities / Indigenous peeple Adverse impacts on vulnerable popo		2	Soil	toxic substances, Peeling off of top	0.0	Soil collapse, top soil release, and soil erosion is assumed, but mitigation measures (paving, stabilization of foundation soil by gravel bed) are possible.
4 Quality of Air facilities 0.0 not assumed. Natural 5 Noise/Vibration Noise/Vibration from facilities or operation activities 0.0 not assumed. Natural 6 Waste Domestic or industrial waste from facilities 0.0 not assumed. 7 Subsidence Use of underground water by facilities 0.0 Impacts that require mitigation measures a not assumed. 8 Flora Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem 0.0 Impacts that require mitigation measures a not assumed. 9 Fauna/Fish/Coral Inbatiats/ecosystems, adverse on migratory fish or birds 0.0 Impacts that require mitigation measures a not assumed. 10 Natural Protected Areas Inductor to Natural Resources 0.0 Impacts that require mitigation measures a not assumed. 2 Impact Indicator to Natural Resources 0.00 Impacts that require mitigation measures a not assumed. 3 Land Use Land use conflict 0.0 Impacts that require mitigation measures a not assumed. 4 Water Use Water use conflict 0.0 Impacts that require mitigatio		3	Quality of Water	sedimentation of toxic substances	-1.0	(construction of adjustment reservoirs and installation of drainage channels) are possible.
3 Noise/Vibration operation activities 0.0 not assumed. Natural 6 Waste Domestic or industrial waste from facilities A large amount of waste (solar cell modul storage batteries, power conditioners, etc.) assumed. 7 Subsidence Use of underground water by facilities -2.0 assumed after reaching the end of its life, intigation measures (promotion of 3R) are possible. 8 Flora Deforestation (including magnets that require mitigation measures a not assumed. Impacts that require mitigation measures a not assumed. 9 Fauna/Fish/Coral Destruction of animal habitats/ecosystems, adverse on migratory fish or birds 0.0 Impacts that require mitigation measures a repossi not assumed. 10 Natural Protected Areas Impact son strict natural protected areas such as National Parks 0.0 Impacts that require mitigation measures a not assumed. 2 Ethnic minorities / Indigenous people Adverse impacts on vulnerable poople 0.0 Impacts that require mitigation measures a not assumed. 3 Land Use Land use conflict 0.0 Impacts that require mitigation measures a not assumed. 5 Landscape Destruction of landscape -3.0 Impacts that require mitigation measures a not assumed. 6 Historical Heri		4	Quality of Air		0.0	Impacts that require mitigation measures are not assumed.
6 Waste Domestic or industrial waste from facilities -2.0 assumed after reaching the end of its file, 1 mitigation measures (promotion of 3R) are possible. 7 Subsidence Use of underground water by facilities 0.0 Impacts that require mitigation measures a not assumed. 8 Flora Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem 0.0 Impacts that require mitigation measures a not assumed. 9 Fauna/Fish/Coral Destruction of animal habitats/ecosystems, adverse on migratory fish or birds 0.0 Impacts that require mitigation measures a not assumed. 10 Natural Protected Areas Impacts on strict natural protected areas such as National Parks 0.0 Impacts that require mitigation measures a not assumed. 2 Ethnic minorities / Indigenous people Adverse impacts on vulnerable people 0.0 Impacts that require mitigation measures a not assumed. 3 Land Use Land use conflict 0.0 Impacts that require mitigation measures a not assumed. 4 Water Use Water use conflict 0.0 Impacts that require mitigation measures a not assumed. 5 Landscape Destruction of landscape -3.0 Impacts that require mitigation measures a not assumed. 6		5	Noise/Vibration		0.0	Impacts that require mitigation measures are not assumed.
7 Subsidence facilities 0.0 not assumed. 8 Flora Deforestation (including margroves), peeling of vegetation, changing of the flora ecosystem 0.0 Impacts that require mitigation measures a not assumed. 9 Fauna/Fish/Coral Destruction of animal habitats/ecosystems, adverse on migratory fish or birds 0.0 There is a concern about the influence of I scale facilities on the movement route of animals, but mitigation measures are possil 10 Natural Protected Impacts on strict natural protected areas such as National Parks 0.0 Impacts that require mitigation measures a not assumed. 10 Natural Protected Involuntary resettlement / loss of means of livelihood 0.0 Impacts that require mitigation measures a not assumed. 2 Ethnic minorities / Indigenous people Adverse impacts on vulnerable people 0.0 Impacts that require mitigation measures a not assumed. 3 Land Use Land use conflict 0.0 Impacts that require mitigation measures a not assumed. 4 Water Use Water use conflict 0.0 Impacts that require mitigation measures a not assumed. 5 Landscape Destruction of landscape -3.0 Impact stat require mitigation measures a not assumed. 6 Historical Heritage	Natural	6	Waste		-2.0	A large amount of waste (solar cell modules, storage batteries, power conditioners, etc.) is assumed after reaching the end of its life, but mitigation measures (promotion of 3R) are possible.
8 Flora mangroves), peeling of vegetation, changing of the flora ecosystem 0.0 impacts that require mitigation measures a not assumed. 9 Fauna/Fish/Coral Destruction of animal habitats/ecosystems, adverse on imgratory fish or birds 0.0 There is a concern about the influence of I scale facilities on the movement route of animals, but mitigation measures are possil 10 Natural Protected Areas Impacts nat require mitigation measures are possil 0.0 2 Impact Indicator to Natural Resources -0.30 Impacts that require mitigation measures a not assumed. 2 Ethnic minorities / Indigenous people people Involuntary resettlement / loss of means of livelihood 0.0 Impacts that require mitigation measures a not assumed. 3 Land Use Land use conflict 0.0 Impacts that require mitigation measures a not assumed. 4 Water Use Water use conflict 0.0 Impacts that require mitigation measures a not assumed. 5 Landscape Destruction of landscape -3.0 Impacts that require mitigation measures a not assumed. 6 Historical Heritage Loss of local heritage 0.0 Impacts that require mitigation measures a not assumed. 6 Historical Heritage Loss of local heritage 0.0		7	Subsidence		0.0	Impacts that require mitigation measures are not assumed.
9 Fauna/Fish/Coral habitats/ecosystems, adverse on migratory fish or birds 0.0 scale facilities on the movement route of animals, but mitigation measures are possi 10 Natural Protected Areas Impacts on strict natural protected areas such as National Parks 0.0 Impacts that require mitigation measures are not assumed. Impact Indicator to Natural Resources -0.30 1 Resettlement Involuntary resettlement / loss of means of livelihood 0.0 Impacts that require mitigation measures a not assumed. 2 Ethnic minorities / Indigenous people Adverse impacts on vulnerable people 0.0 Impacts that require mitigation measures a not assumed. 3 Land Use Land use conflict 0.0 Impacts that require mitigation measures a not assumed. 5 Landscape Destruction of landscape -3.0 Impacts that require mitigation measures a not assumed. 6 Historical Heritage Loss of local heritage 0.0 Impacts that require mitigation measures a not assumed. 6 Historical Heritage Loss of local heritage 0.0 Impacts that require mitigation measures a not assumed. 6 Historical Heritage Loss of local heritage 0.0 Impacts that require mitigation measures a not assumed. </td <td></td> <td>8</td> <td>Flora</td> <td>mangroves), peeling of vegetation,</td> <td>0.0</td> <td>Impacts that require mitigation measures are not assumed.</td>		8	Flora	mangroves), peeling of vegetation,	0.0	Impacts that require mitigation measures are not assumed.
10 Natural Protected Areas Impacts on strict natural protected areas such as National Parks 0.0 Impacts that require mitigation measures a not assumed. Impact Indicator to Natural Resources -0.30 Impact Indicator to Natural Resources -0.0 Impacts that require mitigation measures a not assumed. 1 Resettlement Involuntary resettlement / loss of means of livelihood 0.0 Impacts that require mitigation measures a not assumed. 2 Ethnic minorities / Indigenous people Adverse impacts on vulnerable people 0.0 Impacts that require mitigation measures a not assumed. 3 Land Use Land use conflict 0.0 Impacts that require mitigation measures a not assumed. 5 Landscape Destruction of landscape -3.0 Impacts that require mitigation measures a not assumed. 6 Historical Heritage Loss of local heritage 0.0 Impacts that require mitigation measures a not assumed. 6 Impact Indicator to Social Resources -0.0 Impacts that require mitigation measures a not assumed. 1 Green House Gas Emission of CO2 0.0 Impacts that require mitigation measures a not assumed.		9	Fauna/Fish/Coral	habitats/ecosystems,adverse on	0.0	
Impact Indicator to Natural Resources -0.30 1 Resettlement Involuntary resettlement / loss of means of livelihood 0.0 Impacts that require mitigation measures a not assumed. 2 Ethnic minorities / Indigenous people Adverse impacts on vulnerable people 0.0 Impacts that require mitigation measures a not assumed. 3 Land Use Land use conflict 0.0 Impacts that require mitigation measures a not assumed. 4 Water Use Water use conflict 0.0 Impacts that require mitigation measures a not assumed. 5 Landscape Destruction of landscape -3.0 Impacts that require mitigation measures a not assumed. 6 Historical Heritage Loss of local heritage 0.0 Impacts that require mitigation measures a not assumed. 6 Impact Indicator to Social Resources -0.50 Impacts that require mitigation measures a not assumed. 6 Impact Indicator to Social Resources -0.0 Impacts that require mitigation measures a not assumed.		10		Impacts on strict natural protected	0.0	Impacts that require mitigation measures are
1 Resettlement Involuntary resettlement / loss of means of livelihood 0.0 Impacts that require mitigation measures a not assumed. 2 Ethnic minorities / Indigenous people Adverse impacts on vulnerable people 0.0 Impacts that require mitigation measures a not assumed. 3 Land Use Land use conflict 0.0 Impacts that require mitigation measures a not assumed. 4 Water Use Water use conflict 0.0 Impacts that require mitigation measures a not assumed. 5 Landscape Destruction of landscape -3.0 Huge artificial structures appear at the foor mountains, in the wilderness, etc., and the concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) possible. 6 Historical Heritage Loss of local heritage 0.0 Global 1 Green House Gas Emission of CO2 0.0			Impact Indica		-0.30	
2 Indigenous people people 0.0 not assumed. 3 Land Use Land use conflict 0.0 Impacts that require mitigation measures a not assumed. 4 Water Use Water use conflict 0.0 Impacts that require mitigation measures a not assumed. 5 Landscape Destruction of landscape -3.0 Huge artificial structures appear at the foor mountains, in the wilderness, etc., and the concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) possible. 6 Historical Heritage Loss of local heritage 0.0 Global 1 Green House Gas Emission of CO2 0.0		1	-	Involuntary resettlement /	0.0	Impacts that require mitigation measures are not assumed.
Social 3 Land Use Land use conflict 0.0 not assumed. 4 Water Use Water use conflict 0.0 Impacts that require mitigation measures a not assumed. 5 Landscape Destruction of landscape -3.0 Huge artificial structures appear at the foor mountains, in the wilderness, etc., and the concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) possible. 6 Historical Heritage Loss of local heritage 0.0 Impacts that require mitigation measures a not assumed. Global 1 Green House Gas Emission of CO2 0.0 Impacts that require mitigation measures a not assumed.		2			0.0	Impacts that require mitigation measures are not assumed.
Social 4 Water Use Water use conflict 0.0 not assumed. Social		3	Land Use	Land use conflict	0.0	
5 Landscape Destruction of landscape -3.0 Huge artificial structures appear at the foor mountains, in the wilderness, etc., and the concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) possible. 6 Historical Heritage Loss of local heritage 0.0 Impacts that require mitigation measures a not assumed. Global 1 Green House Gas Emission of CO2 0.0 Impacts that require mitigation measures a not assumed.	Social	4	Water Use	Water use conflict	0.0	
6 Historical Heritage Loss of local heritage 0.0 not assumed. Impact Indicator to Social Resources -0.50 Global 1 Green House Gas Emission of CO2 0.0 Impacts that require mitigation measures a not assumed.	Social	5	Landscape	Destruction of landscape	-3.0	surrounding environment, but mitigation measures (tree planting around the facility) are
Global 1 Green House Gas Emission of CO2 0.0 Impacts that require mitigation measures a not assumed.		6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
Global I Green House Gas Emission of CO ₂ 0.0 not assumed.			Impact Ind	icator to Social Resources	-0.50	
Impact Indicator to Global Environment 0.00	Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
			Impact Indica	tor to Global Environment	0.00	
Comprehensive Impact Indicator -0.26			Comprehensive	Impact Indicator	-0.26	

 Table 11-31
 Evaluation Results on the NAMACUNDE Solar Power Plant

(d)-10. TECHAMUTETE Solar Power Plant

i) Following is a summary of the main features of the natural and social environments identified through the SEA survey.

- Natural Environment
 - ➤ The area is mainly characterized by savanna and bare land, with a national park located nearby.
 - > The site is surrounded by an area of bare fields, with an iron man located nearby.
 - A water source (Cuanhama pond) is located nearby.
 - > Batteries will also be installed for use during operations, so industrial waste is expected.
- Social Environment
 - > There are no residences or agricultural lands in the surrounding area.

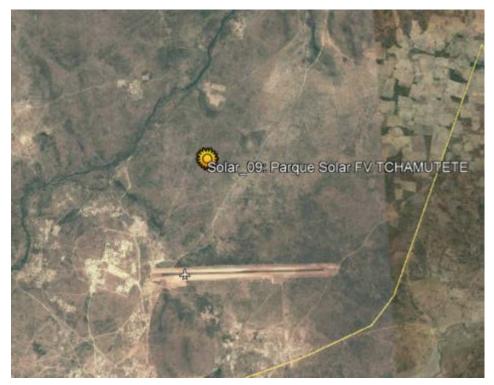


Figure 11-25 Site for TECHAMUTETE Solar Power Plant

ii) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

Group			Indicator		
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Soil collapse, top soil release, and soil erosion is assumed, but mitigation measures (paving, stabilization of foundation soil by gravel bed) are possible.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	-1.0	Occurrence of muddy flow due to soil erosion is assumed, but mitigation measures (construction of adjustment reservoirs and installation of drainage channels) are possible.
	4	Quality of Air	Emission of pollutants from facilities	0.0	Impacts that require mitigation measures are not assumed.
	5	Noise/Vibration	Noise/vibration from facilities or operation activities	0.0	Impacts that require mitigation measures are not assumed.
Natural	6	Waste	Domestic or industrial waste from facilities	-2.0	A large amount of waste (solar cell modules, storage batteries, power conditioners, etc.) is assumed after reaching the end of its life, but mitigation measures (promotion of 3R) are possible.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	0.0	There is a concern about the influence of large- scale facilties on the movement route of animals, but mitigation measures are possible.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.30	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	0.0	Impacts that require mitigation measures are not assumed.
JOCIAI	5	Landscape	Destruction of landscape	-3.0	Huge artificial structures appear at the foot of mountains, in the wilderness, etc., and there is concern about serious impact on the surrounding environment, but mitigation measures (tree planting around the facility) are possible.
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.50	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ator to Global Environment	0.00	
		*			

 Table 11-32
 Evaluation Results on the TECHAMUTETE Solar Power Plant

(e) Biomass Power Plant

(e)-1. Huila Biomass Power Plant

MINEA nominated only one biomass power plant, with a 3 MW capacity plant. The plant is to be located somewhere within the Huila District, but the exact location is uncertain.

Referring examples from other countries, the JICA Study Team evaluated an assumed case where the plant is to be constructed in "Some Area" of Huila District, from environmental and social viewpoints.

i) Evaluation from environmental and social viewpoints

Following is a summary of the evaluation results on the expected influences of this project on the natural, social, and global environments.

					ss Power Plant Power Plant
Group	No.	Item	Indicator	Score	Basis of Score
	1	Topography & Geology	Destruction of ground	0.0	Impacts that require mitigation measures are not assumed.
	2	Soil	Erosion, Disposal, Leakage of toxic substances, Peeling off of top soil	0.0	Soil collapse, top soil release, and soil erosion is assumed, but mitigation measures (paving, stabilization of foundation soil by gravel bed) are possible.
	3	Quality of Water	Pollution due to water-diversion / sedimentation of toxic substances	-1.0	Leakage of polluted water from the collection materials is expected, but mitigation measures (drainage canals, construction of purification ponds) are possible.
	4	Quality of Air	Emission of pollutants from facilities	-1.0	Contamination of air quality (NO ₂ , SO ₂ , PM 10, etc.) is assumed, but mitigation measures (introduction of high efficiency boilers, installation of denitrification/sulfur, dustproof device) are possible.
Natural	5	Noise/Vibration	Noise/vibration from facilities or operation activities	-1.0	Noise due to vehicles and heavy machinery used for loading materials, discharging waste, etc. are assumed, but mitigation measures (low noise vehicles, maintenance of vehicles at regular intervals, etc.) are possible.
	6	Waste	Domestic or industrial waste from facilities	-2.0	A serious negative direct impact is assumed when securing the disposal site for waste (combustion residues, etc.), but mitigation measures (promotion of 3R etc.) are possible.
	7	Subsidence	Use of underground water by facilities	0.0	Impacts that require mitigation measures are not assumed.
	8	Flora	Deforestation (including mangroves), peeling of vegetation, changing of the flora ecosystem	0.0	Impacts that require mitigation measures are not assumed.
	9	Fauna/Fish/Coral	Destruction of animal habitats/ecosystems,adverse on migratory fish or birds	0.0	There is a concern about the influence of large- scale facilties on the movement route of animals, but mitigation measures are possible.
	10	Natural Protected Areas	Impacts on strict natural protected areas such as National Parks	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	tor to Natural Resources	-0.50	
	1	Resettlement	Involuntary resettlement / loss of means of livelihood	0.0	Impacts that require mitigation measures are not assumed.
	2	Ethnic minorities / Indigenous people	Adverse impacts on vulnerable people	0.0	Impacts that require mitigation measures are not assumed.
	3	Land Use	Land use conflict	0.0	Impacts that require mitigation measures are not assumed.
Social	4	Water Use	Water use conflict	-1.0	Competition for water use due to intake from peripheral rivers as cooling water is assumed, but mitigation measures (introduction of air cooling system) are possible.
	5	Landscape	Destruction of landscape	0.0	Impacts that require mitigation measures are not assumed
	6	Historical Heritage	Loss of local heritage	0.0	Impacts that require mitigation measures are not assumed.
		Impact Ind	icator to Social Resources	-0.15	
Global	1	Green House Gas	Emission of CO ₂	0.0	Impacts that require mitigation measures are not assumed.
		Impact Indica	ator to Global Environment	0.00	
		Comprehensive	Impact Indicator	-0.21	

Table 11-33 Evaluation Results on the Huila Biomass Power Plant Power Plant

11.7 Environmental Evaluation

The table below presents the results of the SEA evaluation on power development from environmental and social viewpoints by indiencator (degree of environmental impact).

The power source ranking by negative impact on the natural and social environments, in ascending order (from lowest to highest), was as follows: (i). Biomass, (ii). Hydropower, (iii). Solar, (iv). Wind, (v). Thermal (LNG/Heavy Oil).

The relatively high total environmental impact of wind power and solar power generation stems from the large negative impact on the local landscape caused by the appearance of huge artificial structures in the vast plains of the continent of Africa (mainly savanna, shrub vegetation).

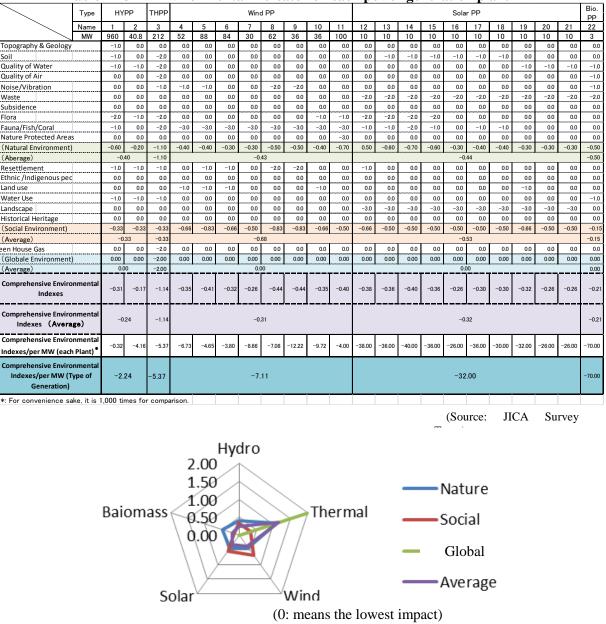


 Table 11-34
 Environmental indicator on each power generation plant

11.8 Scenario analysis from environmental and social viewpoints

The following (A) scenario plan is analyzed as a draft scenario

Meanwhile, the JICA Survey Team formulated a draft scenario (B) to develop more renewable energy, as a reference plan with lower burdens on the global environment and regional environment.

• Scenario (A)

Only hydropower plants and thermal power plants (LNG / heavy oil fired) will be developed in this scenario. Hence, hydropower will be the only renewable energy developed.

[Reference plan]

• Scenario (B)

In this scenario, all types of renewable energy will be developed except hydropower.

Both scenarios were evaluated through the following steps.

From environmental and social viewpoints, the global environment was assessed based on the CO2 emissions volume and the regional environment was evaluated by the negative impact (environmental index) on the surrounding environment (see 11.5(2)).

(a) Evaluation from the viewpoint of the global environment (CO₂ emissions)

Section 11.7 summarizes the evaluation of global environmental aspects in the project area of each power source.

The numerical values are re-listed in the table below.

Table 11-35 Evaluation Points on the Global Environment for Each Power Source

Type of Generation	Hydro	Thermal (LNG/Oil)	Wind	Solar	Biomass	
Environmental Indicator	0.00	-2.00	0.00	0.00	0.00	

(Source: JICA Survey Team)

(b) Evaluation from the viewpoint of the regional environment

Section 11.7 summarizes the evaluation of regional environmental aspects in the project area of each power source.

The numerical values are re-listed in the table below.

Table 11-36 Evaluation Points on the Regional Environment for Each Power Source

Type of Generation	Hydro	Thermal (LNG/Oil)	Wind	Solar	Biomass
Environmental Indicator	-0.36	-0.71	-0.55	-0.48	-0.32
Average	-0.5	535		-0.45	

(Source: JICA Survey Team)

[Analysis result on Scenario (A)]

(c) Global environment

A thermal power generation project with a capacity of 212 MW (CIMANGOLA) using LNG / heavy oil as fuel was indicated by MINEA.

Carbon dioxide of 0.392 kg-CO2/kWh (EIA statistic data 2011) will be emitted with the implementation of this project.

However, if hydropower projects such as CAMBAMBE, MATALA (total capacity of about 1,000 MW) are operated, CO2 emission of 4.7 million tons-CO2 will be reduced annually in comparison with fossil fuel power generation (see Section 11.3.1(4)).

(d) Regional environment

The average value of the natural and social environmental load index (environmental indicator) of hydropower plants and thermal power plants (LNG / heavy oil) is -0.535.

This figure is about 20% higher than the average value of the natural and social environmental load index of renewable energy (wind power, sunlight, biomass), namely, -0.45 (see Table 11-36).

Accordingly, from environmental and social viewpoints, replacing some hydropower and thermal power projects with renewable energy power plants will help improve the local environment.

The analysis of reference Scenario (B), where renewable energy power plants are incorporated into the power development master plan, showed the following results.

(Analysis result on Scenario (B) **)**

(e) Global environment

By implementing the renewable energy plans indicated by MINEA, wind power plants (total: 488 MW), solar power plants (total: 100 MW), and biomass power plant (total: 3 MW) will reduce 938 thousand tons of CO2 emission annually in comparison with fossil-fuel-fired thermal power plants (see Section 11.3.1(4)). This contribution to global environment improvement exceeds the contribution by the diesel-dependent power supply development configuration (2005) by more than 95%.

(f) Regional environment

The average value of the natural and social environmental load index (environmental indicator) of Renewable Energy projects (wind power, solar power, biomass) is about 20% lower than that of hydraulic power generation and thermal power generation (LNG / heavy oil).

The replacement with renewable energy power plants helps to improve the regional environment in the project area.

The following issues are to be taken into account, however, in the case of development of renewable energy power plants instead of hydropower/thermal power plants.

Power system operators have great difficulty in controlling power system stability, as the output of wind power and/or solar power depends on climate conditions. And as the configuration rate of wind power and solar increases, it becomes harder to keep power system stable without sufficient ancillary service such as frequency control.

Therefore, the stability aspect must be considered along with the environmental aspect when introducing renewable energy.

Meanwhile, since biomass power plants can supply stable power less subject to the influences of climate, positive efforts to introduce them would be advantageous.

11.9 Expected mitigation measures

This survey excludes any coverage of the detailed development plans (scale, design etc.) of the respective projects embodied in the various power developments.

Accordingly, since concrete mitigation measures against the environmental impacts caused by the respective power development projects are impossible to quantify at this survey stage (SEA level), the table below describes only the general mitigation measures to be considered for each power development project.

	Table 11-37 Expected Mitigation Measures for Each Power Source
	Expected mitigation measures (avoidance, reduction, compensation)
Hydropower	 Prioritize the adoption of "Run-of River Type" and reduce the impact on the natural and social environments (resettlement of residents). Preferentially select an alternative that can avoid resettling residents. Release river maintenance flow to avoid influences on the natural and social environments (drinking water supply, irrigation, tourism use) downstream due to water reduction. Install fish passes to avoid influences on migratory fish due to the installation of dams / intake weirs. Use nets, barriers or screens to prevent fish from passing into the turbines. Discharge at various elevations of the dam to avoid outflow of anoxic or cold water. In principle, adopt an "embedded type" for a penstock. If inevitable, adopt an "open type." In the case of the "ground surface type" or "semi-underground type" power house, design the
Thermal (LNG, Oil)	 building harmoniously with the surrounding landscape. Avoid new land alterations by locating the plant where existing infrastructure can be used. Adopt the cooling tower system to avoid influence from heated effluent. Set any equipment that generates noise/vibration as far as possible apart from the residences. Offset CO₂ emission from the power plant by energy-saving measures throughout the whole factory or by introducing renewable energy power plants.
Wind	 Use blades to suppress the generation of noise and very-low-frequency sound. Avoid flight routes of migratory birds and avoid bird strikes. Avoid shadow flicker by locating the plant as far as possible apart from residential areas. Avoid the influence of electromagnetic waves on fish, in the case of offshore wind power generation. Design the facilities in harmony with the surrounding landscape
Solar	 Develop a battery that can be disposed of simply, as waste. Design the facilities harmoniously with the surrounding landscape by planting around the site.
Biomass	 Avoid new land alterations by locating the plant where existing infrastructure can be used. Adopt a cooling tower system to avoid the influence of heated effluent. Set any equipment that generates noise/vibration as far apart as possible from residences. Promote the effective use of combustion residue.

 Table 11-37
 Expected Mitigation Measures for Each Power Source

11.10 Implementation of the monitoring plan

For the same reason described in Section 11.9 Mitigation Measures, the preparation and implementation of the monitoring plan is to be considered in the EIA at the project implementation stage.

The table below describes the general monitoring items to be considered when monitoring in time-series the appropriate implementation of mitigation measures proposed in the power development project.

1 au	le 11-38 Commo	0	is for Power Development Project
		Main	Monitoring Items
		Air Quality	SO ₂ , NO ₂ , CO, O ₃ , Soot, Dust, Suspended Particulate Matter (PM10, PM2.5), Coarse Particulate
	Anti-Pollution	Water Quality (Surface) (Ground)	pH, Suspended Solids (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), Total Nitrogen, Total Phosphorus, Heavy Metals, etc.
	measures	Waste (Industrial) (Domestic)	Types, Volume, Implementation of 3R
Power Development		Noise Vibration	Level of noise (dB) and vibration
Project		Odors	Specific bad smell material
		Soil	Presence of heavy metals
		Sedimentation	Sedimentation volume
	Natural	Ecosystem	Threatened species, Endemic species
	Environment	Topography Geology	Erosion, landslide or collapse
	Social	Resettlement	Impacts due to resettlement Adequate payment of compensation cost
	Environment	Living Livelihood	Adverse impacts on the livelihood of inhabitants
	Global Environment	Air Quality	GHG (CO ₂) emission

 Table 11-38
 Common Monitoring Items for Power Development Project

11.11 Stakeholder Meeting

Two stakeholder meetings (SHMs) were scheduled to be held at MINEA in Luanda. The first SHM was held at the scoping implementation stage and the second will be held at the draft final stage of the SEA.

Relevant government agencies, environment-related NGOs, international development support organizations, etc. are invited to participate.

(1) The first stakeholder meeting

MINEA held the first SHM in Luanda with the support of the JICA Survey Team on October 17, 2017.

There were 40 participants, including the JICA Survey Team.

The SHM was held to explain the following matters to MINEA's counterparts and related organizations and exchange opinions on the SEA to be implemented in the master plan.

- ➤ What SEA is conducted in the Master Plan?
- > How is the SEA for the power generation projects to be implemented?
- > What is the "Best Scenario from an environmental viewpoint" for power development?
- > How is the SEA for transmission lines to be implemented?
- > What points should be considered regarding the "best route from an environmental viewpoint"?

In addition, a local consultant entrusted by JICA explained how to collect and analyze information on environmental and social considerations necessary for the SEA.

The main opinions or questions are as follows.

- ➤ The potential candidate sites for hydroelectric power have already been submitted to RNT (GAMEK).
- ➢ For hydroelectric power candidate sites, adjust to RNT and compile as soon as possible (MINEA).
- The international connecting line (Route No.4, Xangongo Baynes) passes through a national park, which creates a problem when applying the JICA guidelines (INRH).

Discussion by SHM participants E

Explanations by the JICA study Team

ESTRATÉGICA (AAE) DO PLANO DE DESENVOLVIMENTO ELÉCTRICO DE ANGOLA LUANDA, AOS 17 DE OUTUBRO DE 2017. NOME INSTITUIÇÃO FUNÇÃO CON	RATÉGICA (AAE) DO PLANO DE DE: LUANDA, AOS 17 D INSTITUIÇÃO	ESTRATÉGICA (AAE) DO PLANO DE DESENVOLVIMENTO ELÉCTRICO DE ANGOLA LUANDA, AOS 17 DE OUTUBRO DE 2017. INSTITUIÇÃO FUNÇÃO CO	SOLA ERM ERM CONTACTOS (TELEMÓVEL OU EMAIL)
lo Jerdinoud	Holisticos	Erge Ambiental	
& Namico	18564	CKF & BYD	
vorm Balaver	ENDE	Disectur	
des lauto	BWT	Chufe de Depto	
anuel Bomingus	RNT	Guge Demingy	
and true to	JICA	Fradictor J	
ACTER 41104NDA	FACE-LANCER	JANUTOR	
asayuki ITO	J/ CA Tean		
wo Vidal	ENDE	DIRECTON	
Kiminori Nakamata	Dick		
Hiteshi FURUKOSHI	JICA team		

LISTA DE PRESENÇAS DO PRIMEIRO ENCONTRO SOBRE A AVALIAÇÃO AMBIENTAL ESTRATÉGICA (AAE) DO PLANO DE DESENVOLVINAENTO ELÉCTRICO DE ANGOLA LUANDA, AOS 17 DE OUTUBRO DE 2017.	CONTACTOS (TELEMÓVEL OU EMAIL)											
ESTRATÉGICA (AAE) DO PLANO DE DESENVOLVIMENTO ELÉCTRICO DE ANGOLA LUANDA, AOS 17 DE OUTUBRO DE 2017.	FUNÇÃO	CHERE DE DETO	Critic De Daro	CHOR DIE	Precon	Director	Director	Trècuico	Expert	Levico	Tecnico	TECNICO
TRATÉGICA (AAE) DO PLANO DE DI LUANDA, AOS 17	INSTITUIÇÃO	MINEA	MINGA	MINEA	GNDE	P 20 BEL	HONE	GATTER	JZCA	GAMER	GAMER	BAUEV
E	NOME	NHONGALA NUANOG	LEONER LUCALA	Jubius Futale	apress Pencerna	<	Warned Quinting	Arlindo Corlos	Shigohi WADA	Paula Francisco	NEGIDIO BUAKELA	tond di.

11-69

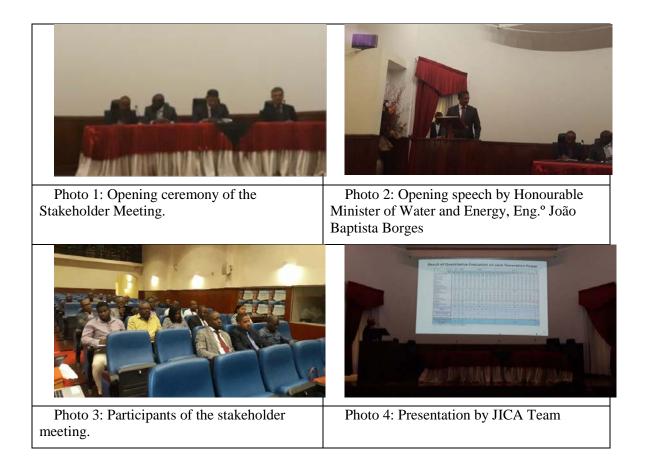
1	LUANDA, AOS 17 DE OUTUBRO DE 2017.	LUANDA, AOS 17 DE OUTUBRO DE 2017.	ERM CONTACTOS CTELEMÓVEL OU EMAIL)
NUME	NALITURAU	LUNYAO	CONTRACTOR (IEEE) CO. FRANK
Albanio Gaspar C	Saner	PECNICO	
Mernis J'MAN	11	11	
HOLF & Jurta	11	- 21	
0	SIMMSK	JECNI'CO	
TER UMMARS	TRSEA	Vecni CO	
	Proder	11	
EDUNON H. F. das Soulo F	PRODEL	Defente neuto	
Lacorios Ferning	Prodet	Delortoments	
Sande Gutsver	DNER	Direfore	
1 4 N/A 2000	NNER	C. Supertana to	

	LUANDA, AOS 17 I	LUANDA, AOS 17 DE OUTUBRO DE 2017.	EKIM
NOME	INSTITUIÇÃO	FUNÇÃO	CONTACTOS (TELEMÓVEL OU EMAIL)
Erebber Marin	MINER DNGB	Henrico	
Himil Muttende	MINEA / DWER	TE'EN'CO	
UTIN MORO	HUGSTICUS	DIRTAM TRONCO	
Parts	GANE	Director Aluce	
S.t.	HINCH	SEE	
Ostation reaces Julie Cougalio	MINEA	TECNICO	
Ralle Him Nar	GAMER	Chips Respectives	
1. 8	-	~	

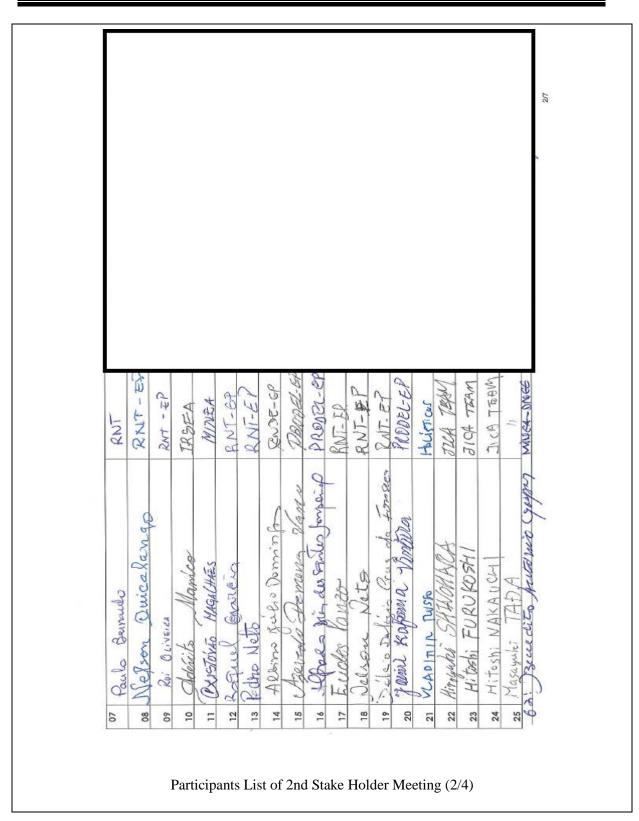
(2) The second stakeholder meeting

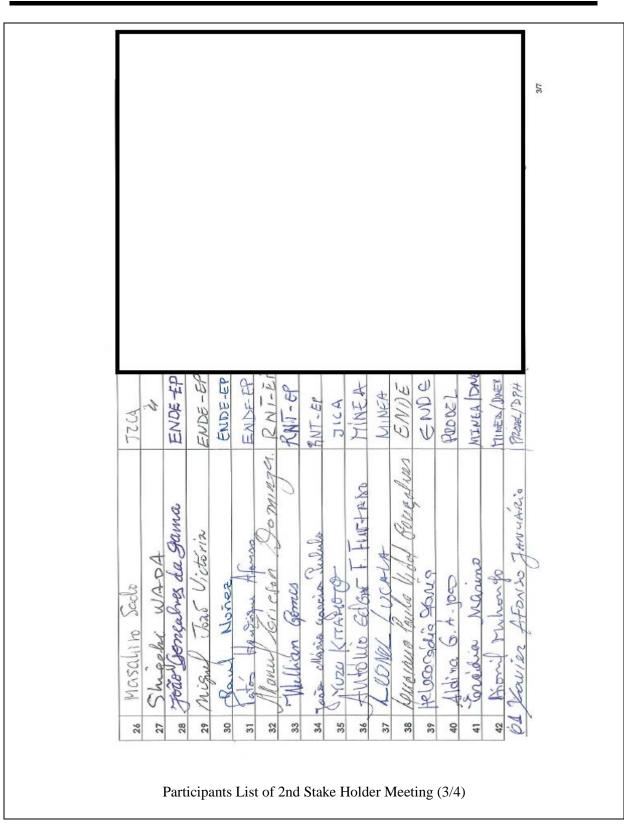
MINEA held the second SHM in Luanda with the support of the JICA Survey Team on June 12, 2018.

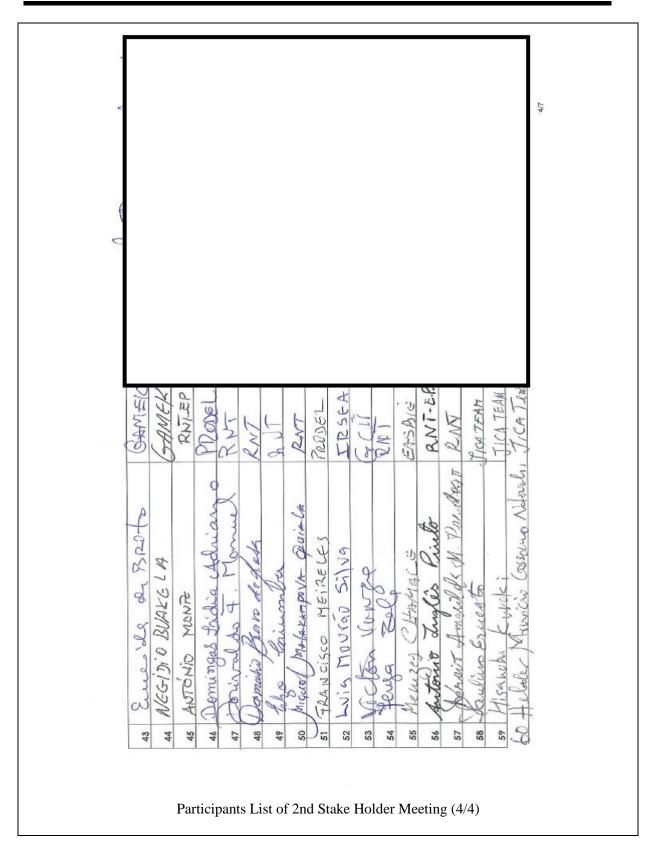
There were 61 participants, participating from RNT (22 persons), PRODEL (9), MINEA (7), ENDE (4), GAMEK (3) and others (16).


The SHM was held, following the opening remarks of Mr. João Baptista Borges, Minister of Energy and Water, to explain the main contents of Draft Final Report to MINEA's counterparts and related organizations and exchange opinions on the SEA results which are the main them of the DFR and to be implemented in the master plan.

After both presentations, participants were required to provide comments and questions:


The main question is as follows;


(Q): Mr. Euclides de Brito, Deputy Director of GAMEK, indicated that Strategic Environmental Assessment is an important step towards clarifying the country's strategic options. He asked for additional information on the Cimangola Thermal Project particularly with regards to the required mitigation measures due to the existence of communities and sensitive receptors in the vicinity of the project. Mr. Brito asked if the project investment amount would increase if strict mitigation measures would be proposed;


(A): all sites were assessed at SEA level and no specific details were provided for each project to allow for Environmental Impact Assessment. However, in case strict mitigation measures are imposed to meet international guidelines it is likely that the project investment amount would be increased.

11.12 SEA concerning transmission expansion plans

(1) **Outlines of Projects**

An SEA has been conducted on the following transmission lines shown in the "Angola Energy Long-term Vision (Angola Energia 2025)" aiming at appropriate power development up to 2025.

		Interval	Lengt	Route	
		linervar	Section	Total	Koute
	1	Capanda PS – Saurimo	550		
	2	Cambambe PS – Lubango	600		See the
Dom.	3	Belem do Dango – Lubango SS	330	2,290	
Dom.	4	Lubango SS – Cahama SS – Baynes SS	330	2,290	Below Figure
	5	Belem do Dango – Ondjiva	480		_
Int.	1	Cahama SS – Ruacana PS	120	280	

Table 11-39	List of T/Ls to be evaluated by SEA
--------------------	-------------------------------------

(Source: JICA Survey Team)

(Source: JICA Survey Team)

Figure 11-27 Transmission Lines to be evaluated by SEA (5+1 Routes)

(2) Comparative analysis of alternatives (including Zero Option)

The transmission lines listed in Table 11-39 are bulk transmission lines proposed in Angola Energia 2025 to interconnect among the northern, central, and southern regions and neighboring countries.

An SEA is therefore to be implemented for the above T/L expansion plan. Noteworthy environmental and social issues when implementing the T/L expansion projects are indicated based on the results of this SEA.

In concrete terms, scoping will be carried out on each planned transmission line route to determine which of the environmental items to be evaluated quantitatively (from 0 to -3) have negative impacts on the surrounding environment. Environmental items evaluated with low numerical values (high negative impact) will be identified as items to address when planning alternative routes.

However, since the methods for quantitatively evaluating environmental impacts have not yet been scientifically proven, each evaluation item is to be scored on a four-point scale (from 0 to -3) focused on the qualitative differences of each route.

- 0: No impact
- 1: Small but not serious impact
- 2: Serious but not irreversible impact
- 3: Huge, serious, irreversible impact

The table below shows the results of a quantitative comparison of the impact of each transmission line on the environment, from environmental and social viewpoints.

The examination of the zero option is not considered at the SEA stage, since no practical or concrete project plan to transmit electricity other than the construction of transmission lines can be seen.

The zero option would be considered at the F/S stage or EIA, where various investigations on the natural and social environments will be conducted.

Table 11-40Items to watch when implementing or selecting the T/L routes and weighing the
impacts of each route

Name	1	2	3	4	5	1
	Capanda PS	Cambambe	Belem do	Lubango SS	Belem do	Cahama SS
	- Saurm	PS -	Dango –	– Cahama SS	Dango –	– Ruacana
Items		Lubango	Lubango SS	 Baynes SS 	Ondjiva SS	PS
Protected Area ⁱ	-2	-3	-3	-2	0	0
Topography ⁱⁱ	0	-1	-1	-1	-1	-1
Resettlement ¹¹¹	-1	-2	-2	-2	-2	-1

(Source: JICA Survey Team)

Note) i: National Parks and Bird Sanctuary (for migratory birds) evaluated as (-3)

ii: Average slope of the whole route evaluated as $0\% \sim 5\%$ (0), $5\% \sim 10\%$ (-1), $10\% \sim 20\%$ (-2), > 20% (-3)

iii: No house (0), $100 \sim 400$ houses (-1), $401 \sim 1,000$ houses (-2), >1,000 houses (-3)

(3) Scoping on every transmission line route

The scoping on every Transmission Line is shown in the following tables.

(3)-1. CapanSaurimoda PS – Saurimo Route

Table 11-41 Scoping for Capanda PS – Saurimo Transmission Line

Item		Impact	Rating	Results
	1	Air Quality	D	No specific negative impact is expected.
_	2	Water Quality	D	No specific negative impact is expected.
ltrol	3	Soil Quality	D	No specific negative impact is expected.
Pollution Control	4	Sediment (bottom of dam)	D	No specific negative impact is expected.
utic	5	Noise and Vibration	D	No specific negative impact is expected.
Poll	6	Odor	D	No specific negative impact is expected.
	7	Waste	D	No specific negative impact is expected.
	8	Subsidence	D	No specific negative impact is expected.
ц.	9	Protected Areas	В	Specific negative impact on protected area(s) is expected.
Natural Environment	10	Ecosystem	С	The extent of the influence associated with the construction of
iron		T 1 1	_	the transmission line is unknown at present.
Nat Env	11	Topography and Geology	С	Depending on the geology, there is a possibility of soil erosion around the towers.
	12	Land acquisition and Resettlement	В	Confirm the existence of private land on the transmission line land (ROW) and the usage situation. The actual condition of the settlements and other residences on the route is also unconfirmed, but no need for involuntary resettlement relating to the construction of transmission lines is assumed.
	13	Poor People	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
	14	Ethnic Minority Groups and Indigenous People	D	No specific negative impact is expected.
iment	15	Local Economy such as Loss of Employment and Livelihood Means	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
Social Environment	16	Land Use and Utilization of Local Resources	С	The impact is unknown from the existing documents. This item will be evaluated after collecting and analyzing information through social surveys in the field.
Socia	17	Water Usage, Water Rights, etc.	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
	18	Existing Social Infrastructure and Services	D	No specific negative impact is expected.
	19	Social Institutions such as Social Infrastructure and Local Decision-making Institutions	D	No specific negative impact is expected.
	20	Misdistribution of Benefits and Loss	D	No specific negative impact is expected.
	21	Local Conflicts of Interest	D	No specific negative impact is expected.

Item		Impact	Rating	Results
	22	Cultural Heritage	D	No specific negative impact is expected.
	23	Landscape	D	There are no scenic spots in or around the site.
	24	Gender	D	No specific negative impact is expected.
	25	Children's Rights	D	No specific negative impact is expected.
	26	Infectious Diseases such as HIV/AIDS	C-	The extent of the influence associated with the construction of the transmission line is unknown at present.
	27	Work Environment (including Work Safety)	B-	Accidents may occur at the construction site. Accidents involving workers may occur during maintenance work
r	28	Accidents	B-	Accidents may occur at the construction site. Increased traffic volume may cause traffic accidents.
Other	29	Cross-boundary Impact and Climate Change	D	No specific negative impact is expected.

Note: A+/-: Significant positive/negative impact is expected

B+/-: Positive/negative impact is expected to some extent

C+/-: Extent of positive/negative impact is unknown (further examination is needed; the impact may be clarified as the study progresses)

D: No impact is expected

(Source: JICA Survey Team)

(3)-2. Cambambe PS – Lubango Route

Table 11-42 Scoping for Cambambe PS – Lubango Transmission Line

Item		Impact	Rating	Results
	1	Air Quality	D	No specific negative impact is expected.
1	2	Water Quality	D	No specific negative impact is expected.
ntrc	3	Soil Quality	D	No specific negative impact is expected.
Pollution Control	4	Sediment (bottom of dam)	D	No specific negative impact is expected.
luti	5	Noise and Vibration	D	No specific negative impact is expected.
Pol	6	Odor	D	No specific negative impact is expected.
	7	Waste	D	No specific negative impact is expected.
	8	Subsidence	D	No specific negative impact is expected.
	9	Protected Areas	A-	Specific negative impact on protected area(s) is expected.
iroi t	10	Ecosystem	A-	Bird strikes on power transmission lines are assumed.
Natural Environ ment	11	Topography and Geology	С	Depending on the geology, there is a possibility of soil erosion around the towers.
iment	12	Land acquisition and Resettlement	В	Confirm the existence of private land on the transmission line land (ROW) and the usage situation. The actual condition of the settlements and other residences on the route is also unconfirmed, but no need for involuntary resettlement relating to the construction of transmission lines is assumed.
nviror	13	Poor People	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
Social Environment	14	Ethnic Minority Groups and Indigenous People	D	No specific negative impact is expected.
	15	Local Economy such as Loss of Employment and	С	The extent of the influence associated with the construction of the transmission line is unknown at present.

Item		Impact	Rating	Results
		Livelihood Means		
	16	Land Use and Utilization of Local Resources	С	The impact is unknown from the existing documents. This item will be evaluated after collecting and analyzing information through social surveys in the field.
	17	Water Usage, Water Rights, etc.	C	The extent of the influence associated with the construction of the transmission line is unknown at present.
	18	Existing Social Infrastructure and Services	D	No specific negative impact is expected.
	19	Social Institutions such as Social Infrastructure and Local Decision-making Institutions	D	No specific negative impact is expected.
	20	Misdistribution of Benefits and Loss	D	No specific negative impact is expected.
	21	Local Conflicts of Interest	D	No specific negative impact is expected.
	22	Cultural Heritage	D	No specific negative impact is expected.
	23	Landscape	D	There are no scenic spots in or around the site.
	24	Gender	D	No specific negative impact is expected.
	25	Children's Rights	D	No specific negative impact is expected.
	26	Infectious Diseases such as HIV/AIDS	C-	The extent of the influence associated with the construction of the transmission line is unknown at present.
	27	Work Environment (including Work Safety)	B-	Accidents may occur at the construction site. Accidents involving workers may occur during maintenance work
л	28	Accidents	B-	Accidents may occur at the construction site. Increased traffic volume may cause traffic accidents.
Other	29	Cross-boundary Impact and Climate Change	D	No specific negative impact is expected.

(3)-3. Belem do Dango – Lubango SS Route

Table 11-43 Scoping for Belem do Dango – Lubango SS Transmission Line

Item		Impact	Rating	Results
	1	Air Quality	D	No specific negative impact is expected.
1	2	Water Quality	D	No specific negative impact is expected.
Control	3	Soil Quality	D	No specific negative impact is expected.
on Co	4	Sediment (bottom of dam)	D	No specific negative impact is expected.
Pollution	5	Noise and Vibration	D	No specific negative impact is expected.
Pol	6	Odor	D	No specific negative impact is expected.
	7	Waste	D	No specific negative impact is expected.
	8	Subsidence	D	No specific negative impact is expected.
ľ	9	Protected Areas	A-	Specific negative impact on protected area(s) is expected.
roi t	10	Ecosystem	A-	Bird strikes on power transmission lines are assumed.
Natural Environ ment	11	Topography and Geology	С	Depending on the geology, there is a possibility of soil erosion around the towers.
	12	Land acquisition and	B-	Confirm the existence of private land on the transmission line

Item		Impact	Rating	Results
		Resettlement		land (ROW) and the usage situation. The actual condition of the settlements and other residences on the route is also unconfirmed, but no need for involuntary resettlement relating to the construction of transmission lines is assumed.
	13	Poor People	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
	14	Ethnic Minority Groups and Indigenous People	D	No specific negative impact is expected.
	15	Local Economy such as Loss of Employment and Livelihood Means	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
	16	Land Use and Utilization of Local Resources	С	The impact is unknown from the existing documents. This item will be evaluated after collecting and analyzing information through social surveys in the field.
	17	Water Usage, Water Rights, etc.	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
	18	Existing Social Infrastructure and Services	D	No specific negative impact is expected.
	19	Social Institutions such as Social Infrastructure and Local Decision-making Institutions	D	No specific negative impact is expected.
	20	Misdistribution of Benefits and Loss	D	No specific negative impact is expected.
	21	Local Conflicts of Interest	D	No specific negative impact is expected.
	22	Cultural Heritage	D	No specific negative impact is expected.
	23	Landscape	D	There are no scenic spots in or around the site.
	24	Gender	D	No specific negative impact is expected.
	25	Children's Rights	D	No specific negative impact is expected.
	26	Infectious Diseases such as HIV/AIDS	C-	The extent of the influence associated with the construction of the transmission line is unknown at present.
	27	Work Environment (including Work Safety)	B-	Accidents may occur at the construction site. Accidents involving workers may occur during maintenance work
я	28	Accidents	B-	Accidents may occur at the construction site. Increased traffic volume may cause traffic accidents.
Other	29	Cross-boundary Impact and Climate Change	D	No specific negative impact is expected.

(3)-4. Lubango SS – Cahama SS – Baynes SS Route

Table 11-44 Scoping for Lubango SS – Cahama SS – Baynes SS Transmission Line

Item		Impact	Rating	Results
	1	Air Quality	D	No specific negative impact is expected.
_	2	Water Quality	D	No specific negative impact is expected.
itro	3	Soil Quality	D	No specific negative impact is expected.
Pollution Control	4	Sediment (bottom of dam)	D	No specific negative impact is expected.
lutic	5	Noise and Vibration	D	No specific negative impact is expected.
Pol	6	Odor	D	No specific negative impact is expected.
	7	Waste	D	No specific negative impact is expected.
	8	Subsidence	D	No specific negative impact is expected.
- 5	9	Protected Areas	A-	Specific negative impact on protected area(s) is expected.
tura viro nt	10	Ecosystem	A-	Bird strikes on power transmission lines are assumed.
Natural Environ ment	11	Topography and Geology	C	Depending on the geology, there is a possibility of soil erosion around the towers.
	12	Land acquisition and Resettlement	B-	Confirm the existence of private land on the transmission line land (ROW) and the usage situation. The actual condition of the settlements and other residences on the route is also unconfirmed, but no need for involuntary resettlement relating to the construction of transmission lines is assumed.
	13	Poor People	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
	14	Ethnic Minority Groups and Indigenous People	D	No specific negative impact is expected.
	15	Local Economy such as Loss of Employment and Livelihood Means	С	The extent of the influence associated with the construction of the transmission line is unknown at present
nt	16	Land Use and Utilization of Local Resources	С	The impact is unknown from the existing documents. This item will be evaluated after collecting and analyzing information through social surveys in the field.
enme	17	Water Usage, Water Rights, etc.	С	The extent of the influence associated with the construction of the transmission line is unknown at present
cial Environment	18	Existing Social Infrastructure and Services	D	No specific negative impact is expected.
Soci	19	Social Institutions such as Social Infrastructure and Local Decision-making Institutions	D	No specific negative impact is expected.
	20	Misdistribution of Benefits and Loss	D	No specific negative impact is expected.
	21	Local Conflicts of Interest	D	No specific negative impact is expected.
	22	Cultural Heritage	D	No specific negative impact is expected.
	23	Landscape	D	There are no scenic spots in or around the site.
	24	Gender	D	No specific negative impact is expected.
	25	Children's Rights	D	No specific negative impact is expected.
	26	Infectious Diseases such as HIV/AIDS	C-	The extent of the influence associated with the construction of the transmission line is unknown at present

Item		Impact	Rating	Results
	27	Work Environment (including Work Safety)	B-	Accidents may occur at the construction site. Accidents involving workers may occur during maintenance work.
r	28	Accidents	B-	Accidents may occur at the construction site. Increased traffic volume may cause traffic accidents.
Other	29	Cross-boundary Impact and Climate Change	D	No specific negative impact is expected.

(3)-5 Belem do Dango – Ondjiva SS Route

Table 11-45 Scoping for Belem do Dango – Ondjiva SS Transmission Line

Item	Impact		Rating	Results
	1	Air Quality	D	No specific negative impact is expected.
I	2	Water Quality	D	No specific negative impact is expected.
ntro	3	Soil Quality	D	No specific negative impact is expected.
Pollution Control	4	Sediment (bottom of dam)	D	No specific negative impact is expected.
luti	5	Noise and Vibration	D	No specific negative impact is expected.
Pol	6	Odor	D	No specific negative impact is expected.
	7	Waste	D	No specific negative impact is expected.
	8	Subsidence	D	No specific negative impact is expected.
L	9	Protected Areas	D	No specific negative impact is expected.
iroi t	10	Ecosystem	D	No specific negative impact is anticipated.
Natural Environ ment	11	Topography and Geology	С	Depending on the geology, there is a possibility of soil erosion around the towers.
	12	Land acquisition and Resettlement	B-	Confirm the existence of private land on the transmission line land (ROW) and the usage situation. The actual condition of the settlements and other residences on the route is also unconfirmed, but no need for involuntary resettlement relating to the construction of transmission lines is assumed.
	13	Poor People	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
ant	14	Ethnic Minority Groups and Indigenous People	D	No specific negative impact is expected.
Social Environment	15	Local Economy such as Loss of Employment and Livelihood Means	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
Social	16	Land Use and Utilization of Local Resources	С	The impact is unknown from the existing documents. This item will be evaluated after collecting and analyzing information through social surveys in the field.
	17	Water Usage, Water Rights, etc.	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
	18	Existing Social Infrastructure and Services	D	No specific negative impact is expected.
	19	Social Institutions such as Social Infrastructure and	D	No specific negative impact is expected.

Item	Impact		Rating	Results
		Local Decision-making		
	20	Institutions Misdistribution of Benefits and Loss	D	No specific negative impact is expected.
	21	Local Conflicts of Interest	D	No specific negative impact is expected.
	22	Cultural Heritage	D	No specific negative impact is expected.
	23	Landscape	D	There are no scenic spots in or around the site.
	24	Gender	D	No specific negative impact is expected.
	25	Children's Rights	D	No specific negative impact is expected.
	26	Infectious Diseases such as HIV/AIDS	C-	The extent of the influence associated with the construction of the transmission line is unknown at present
	27	Work Environment (including Work Safety)	B-	Accidents may occur at the construction site. Accidents involving workers may occur during maintenance work
r	28	Accidents	B-	Accidents may occur at the construction site. Increased traffic volume may cause traffic accidents.
Other	29	Cross-boundary Impact and Climate Change	D	No specific negative impact is expected.

(3)-6 Cahama SS – Ruacana PS Route

Table 11-46 Scoping for Cahama SS – Ruacana PS Transmission Line

Item		Impact	Rating	Results
	1	Air Quality	D	No specific negative impact is expected.
-	2	Water Quality	D	No specific negative impact is expected.
ntrc	3	Soil Quality	D	No specific negative impact is expected.
Pollution Control	4	Sediment (bottom of dam)	D	No specific negative impact is expected.
luti	5	Noise and Vibration	D	No specific negative impact is expected.
Pol	6	Odor	D	No specific negative impact is expected.
	7	Waste	D	No specific negative impact is expected.
	8	Subsidence	D	No specific negative impact is expected.
Ħ	9	Protected Areas	D	No specific negative impact is expected.
ume	10	Ecosystem	D	No specific negative impact is expected.
Natural Environment	11	Topography and Geology	С	Depending on the geology, there is a possibility of soil erosion around the towers.
Social Environment	12	Land acquisition and Resettlement	B-	Confirm the existence of private land on the transmission line land (ROW) and the usage situation. The actual condition of the settlements and other residences on the route is also unconfirmed, but no need for involuntary resettlement relating to the construction of transmission lines is assumed.
l Envi	13	Poor People	С	The extent of the influence associated with the construction of the transmission line is unknown at present.
Social	14	Ethnic Minority Groups and Indigenous People	D	No specific negative impact is expected.
	15	Local Economy such	С	The extent of the influence associated with the construction of

Item	Impact		Rating	Results
		as Loss of Employment and Livelihood Means		the transmission line is unknown at present
	16	Land Use and Utilization of Local Resources	C	The impact is unknown from the existing documents. This item will be evaluated after collecting and analyzing information through social surveys in the field.
	17	Water Usage, Water Rights, etc.	С	The extent of the influence associated with the construction of the transmission line is unknown at present
	18	Existing Social Infrastructure and Services	D	No specific negative impact is expected.
	19	Social Institutions such as Social Infrastructure and Local Decision-making Institutions	D	No specific negative impact is expected.
	20	Misdistribution of Benefits and Loss	D	No specific negative impact is expected.
	21	Local Conflicts of Interest	D	No specific negative impact is expected.
	22	Cultural Heritage	D	No specific negative impact is expected.
	23	Landscape	D	There are no scenic spots in or around the site.
	24	Gender	D	No specific negative impact is expected.
	25	Children's Rights	D	No specific negative impact is expected.
	26	Infectious Diseases such as HIV/AIDS	C-	The extent of the influence associated with the construction of the transmission line is unknown at present
	27	Work Environment (including Work Safety)	B-	Accidents may occur at the construction site. Accidents involving workers may occur during maintenance work
х	28	Accidents	B-	Accidents may occur at the construction site. Increase of traffic volume may cause traffic accidents
Other	29	Cross-boundary Impact and Climate Change	D	No specific negative impact is expected.

(4) **Proposed TOR on survey to collect date**

The table below summarizes the surveys on major environmental and social aspects to be carried out at the implementation stage of the project, based on the above evaluations.

Environmental Items	Survey Items	Survey Method
Air Quality	 Relevant environmental standards Meteorological information Current status of ambient atmosphere 	 Obtain ambient air quality standards, Measure the air pollutants (TSP), SO2, NO2, CO, O3, PM10, PM2.5.
Water Quality	 Relevant environmental standards Current status of water quality 	 Obtain water quality standards and effluent standards. Measure the existing reservoir and river water quality (temperatures, salinity, COD, nutrients, etc.)
Soil Quality	- Relevant environmental	- Measure the soil quality and screen

Table 11-47Survey Items and Methods

Environmental Items	Survey Items	Survey Method
	standards	for any contamination.
Noise and Vibration	 Relevant environmental standards Current status of noise and vibration 	 Obtain noise level standards Measure the noise levels (background)
Waste	- Relevant environmental standards	- Obtain waste handling standards / manuals / guidelines.
Subsidence	- Current status of soil conditions	 Geological survey
Protected Areas	- Current status of Protected Areas	- Collect relevant laws and regulations, information on Protected Areas
Ecosystem	- Current habitat status of flora, mammal, birds, reptiles, amphibians, fish, precious species (migrant birds)	- Survey the distribution of flora and fauna.
Topography and Geology	- Geological conditions	- Obtain geological information
Land acquisition / Resettlement	 Confirm who the affected people are and the negative impacts caused by the project. Confirm the assets of the affected people Identify the livelihoods of the affected people 	 Collect relevant laws and regulations, information on relevant cases Conduct a population census Conduct an asset inventory survey Conduct a household socioeconomic survey
Disturbances to Ethnic Minority Groups and Indigenous People	- Identify ethnic minority groups and indigenous people among the affected people	 Collect information on relevant laws and regulations, information on relevant cases Conduct a population census Conduct an asset inventory survey Conduct a household socioeconomic survey
Land Use and Utilization of Local Resources	 Identify the present land use Identify the jobs and livelihoods of the affected people	 Collect information on the employment and income in the affected area Interviews with the households
Disturbance of Water Usage, Water Rights, etc.	- Identify the present water use for day-to-day life and agricultural activities.	Household socioeconomic surveyInterviews with the households
Cultural Heritage	- Current status of Cultural Heritage Areas	- Collect information on relevant laws and regulations and information on Heritage Areas
Landscape	- Current status of outstanding scenery	- Collect information on relevant laws and regulations and information on outstanding scenery
Cross-boundary Impact and Climate Change	- Identify the present air quality	- Measure CO ₂ emitted from construction vehicles and heavy machines

(5) Environment Impact Assessment

The following table summarizes environmental items that should be considered from environmental and social viewpoints when preparing concrete plans for each transmission line route (5 \pm 1 routes), based on the evaluation results from the scoping on the planned routes.

No.	Name of Route	Environmental Items
1	Capanda PS – Saurimo	> An Important Bird Area (CUANGO) is located
		nearby, so considerations for ecological conservation
		will be necessary.
		► There are three villages, each with about 50
		households, nearby. These villages should preferably be avoided when deciding the routes.
		 The terrain is generally flat, but about 20% of the
		total area is sloped at gradients of 5 to 10%, entailing
		a risk of soil erosion.
2	Cambambe PS - Lubango	➢ A protected area (BUFFALO) and Important Bird
		Area (GABELA) are located in and around the
		planned area, so considerations for ecological
		conservation will be necessary.
		There are 13 villages, each with about 50 households. It will be preferable to quoid these villages when
		It will be preferable to avoid these villages when deciding the routes.
		The terrain is generally flat, but about 25% of the
		total area is sloped at gradients of 5 to 10%, entailing
		a risk of soil erosion.
3	Belem do Dango – Lubango SS	➢ A protected area (BUFFALO) and Important Bird
		Area (CACONDA) are located in and around the
		planned area, so considerations for ecological
		conservation will be necessary.
		There are 11 villages, each with about 50 households. These villages should preferably be evolded when
		These villages should preferably be avoided when deciding the routes.
		The terrain is generally flat, but about 30% of the
		total area is sloped at gradients of 5 to 10%, entailing
		a risk of soil erosion.
4	Lubango SS – Cahama SS –	➤ A National Park (IONA) is located in the planned
	Baynes SS	area, so considerations for ecological conservation
		will be necessary.
		► There are 4 villages, each with about 50 households.
		These villages should preferably be avoided when deciding the routes.
		The terrain is generally flat, but about 10% of the
		total area is sloped at gradients of 5 to 10%, entailing
		a risk of soil erosion.
		4
5	Belem do Dango – Ondjiva SS	There are 14 villages, each with about 50 households.
		These villages should preferably be avoided when
		deciding the routes.

Table 11-48 Environmental Items to be considered for Determination of the T/L Route

6 Cahama SS –Ruacana PS	 There are 2 villages, each with about 50 households. These villages should preferably be avoided when deciding the routes.
-------------------------	--

(6) **Expected Mitigation Measures**

No detailed determination of transmission line routes is covered in this survey.

As concrete mitigation measures against the environmental impacts caused by each transmission line expansion project are impossible to quantify at this survey stage (SEA level), the table below presents only general mitigation measures to be considered.

Table 11-49 Expected Mitigation Measures for Transmission Line
--

	Expected mitigation measures (avoidance, reduction, compensation)			
Transmission line	(Countermeasure on Environment)			
	• Optimization of transmission line route with respect to avian migration corridors.			
	• Installation of anti-perching devices or platforms specially designed to encourage birds to perch or nest in safer places.			
	• Placement of fluttering banners and brightly-colored (orange, yellow, white) spirals on transmission lines.			
	• Use of plant screens or other types of screens close to the transmission lines to force birds to fly at a higher altitude.			
	• Avoidance of conservation units in habitats that have good wildlife potential.			
	(Work Environment and Accidents)			
	• Confirmation of landmine laying areas and a thorough ban on entry into dangerous areas.			
	· Establishment of safety management plans and enforcement of compliance.			
	· Thorough use of basic safety equipment such as safety shoes, gloves, and			
	helmets.			
	• Thorough use of safety belts when working high above the ground.			

(Source: JICA Survey Team)

(7) Implementation of Monitoring Plan

For the same background reasons described in the above section on Mitigation Measures, the preparation and implementation of the monitoring plan is to be considered in the EIA at the project implementation stage.

The table below describes the general monitoring items to be considered when monitoring in time-series the appropriate implementation of mitigation measures proposed in a transmission expansion project.

	Main Monitoring Items		
Transmission	Anti-	Air Quality	SO ₂ , NO ₂ , CO, O ₃ , Soot, Dust, Suspended particulate
Line	Pollution		Matter (MP ₁₀ , PM _{2.5}), Coarse particulate
	measures	Water	pH, Suspended solids (SS), Biochemical Oxygen
		Quality	Demand (BOD), Chemical Oxygen Demand (COD),
		Surface	Dissolved Oxygen (DO), Total Nitrogen, Total
		(Ground)	Phosphorus, Heavy Metals, etc.
		Waste	Types, Volume, Implementation of 3R
		(Industrial)	

 Table 11-50
 Common Monitoring Items for Transmission Line Expansion Projects

	(Domestic)	
	Noise	Level of noise (dB) and vibration
	Vibration	
	Odors	Specific bad smell materials
	Soil	Presence of heavy metals
Natural	Ecosystem	Threatened species, Endemic species
Environment		Grasping of bird strike accidents
	Topography	Erosion, Landslide
	Geology	
Social	Resettlement	Impacts of Resettlement
Environment		Adequate explanation on compensation
	Living	Adverse impacts on the living conditions
	Livelihood	of inhabitants
Global	Air Quality	Emission of GHG (CO_2)
Environment	-	

Chapter 12 Drafting the Master Plan

12.1 To Draft Comprehensive Power Master Plans toward the Year 2040

12.1.1 Generation Development Project List Formulation Policy

Based on the results examined in Chapter 6 and the results of the study on environmental and social considerations in Chapter 11, we will formulate a generation development project list according to the following policy

(1) To Reflect the Results of the study on Environmental and Social Considerations, Including SEA

- Since renewable energy has less impact on the natural environment than large hydropower and thermal power generation, we will introduce feasible projects to the maximum extent possible.
- The examinations so far performed indicate that large hydropower and thermal power generation do not have a huge influence on the natural environment and social environment in Angola. We will therefore introduce them appropriately according to their characteristics.
- The CO2 emissions from the thermal power plants planned under this Master Plan will stand at around 3,000 kton-CO2 / year in 2030, or about 3% of the INDC estimate (Conditional scenario). The impact, therefore, is not considered significant.

(2) Planned Introduction of Large Hydropower

- Based on the latest project cost, large hydropower is the most advantageous from the viewpoint of economy, as discussed in terms of power generation expenses. For this reason, hydropower development is planned as the first priority.
- ➤ Large hydropower is also important for the mitigation of CO2 emissions, so positive adoption has significance. There will, however, be possible impacts on the social environment (e.g., resident resettlement) and impacts on the natural environment inside dam reservoirs. It will therefore be essential to consider these points when planning the future stages of development.
- As a development pattern, multiple projects should not overlap in the same river in a scheduled manner. If project schedules overlap, a schedule change in one project is very likely to affect the schedules of other projects, impeding the planning overall.

(3) Listing of Renewable Generation Projects as Much as Possible

- From the viewpoint of reducing CO2 emissions, we will actively introduce renewable power generation.
- ➤ Many of the plans, however, remain at the theoretical reserves study level and still appear to have low feasibility. Among the projects listed in the plans, feasibility will only be confirmed for those that have been given project names.

(4) Introduction of CCGT as a Middle Demand Power Supply

- As study on the power generation expenses, CCGT is advantageous in terms of cost as a middle demand power supply and is economical next to hydropower as a base demand power supply.
- The fuel to be used in the CCGT is assumed to be natural gas in the future. Earlier, however, the fuel will be switched from LPG at the initial stage to LNG at the second stage.

(5) Introduction of GT as a Peak Demand Power Supply

- GT has cost advantages as a peak demand power supply, according to our examinations of power generation expenses. Because GT is economical as a reserve power, we also introduce it as capacity for the reserve margin.
- ➤ It will be essential, however, to operate the peak demand power supply in response to sudden changes in demand. SCADA and other controllable systems will therefore have to be introduced.
- According to the experiences of the Survey Team, peak demand often shifts to middle demand as the load factor changes. An effective approach to this is to combine single cycle GT with steam turbine to make CCGT. Hence, the new GT plant will be connected to the 400 kV backbone to the maximum extent possible, on the premise of large capacity. To ensure high heat efficiency, GT will be placed where cooling water on rivers or coastlines is easily available. One possibility would be to place a GT plant in Lobito Port.
- \succ Although we assume natural gas in the future, LPG is the assumed fuel in the early stages.

12.1.2 Policy for Formulating the Transmission Development Project List

Based on the results examined in Chapter 7, we formulated the electric power transmission development list in accordance with the following policy.

(1) Expansion of the 400 kV Backbone from the Northern Part to the Central Part, Southern Part, and Western part

- ➤ To promote the electrification of the whole country of Angola, we expand the 400 kV main system to realize the supply of grid electricity nationwide by the target year of 2025.
- To prioritize development of the backbone project from the middle part to Lubango in the southern part on the extension line of the 400 kV transmission development already started among Lauca ~ Waco Kungo ~ Belem do Huambo.
- In parallel, we recommend new backbone line projects from Cambutasu ~ Gabela ~ Nova Biopio to Lubango, the development we newly planned in this study.
- ➤ To coordinate the timing with the completion of the international interconnection line with Namibia, from Lubango to Cahama, we will extend the 400 kV backbone line toward 2027 of the target year.

(2) Development of 220 kV Lines for Reinforcement of Regional Power System Substations to Respond to Increased Demand

> To enhance the regional supply system in Luanda in the capital and Benguela in the central region, etc.

(3) Construction of Transmission Lines for Newly Developed Power Sources

➤ We will link the newly developed hydropower supply and gas thermal power plants to be installed in the central and southern parts to the backbone lines.

(4) Adoption of a Two-Circuit-type Main Transmission Line to Satisfy the N-1 Criteria.

➤ We plan to install one more transmission line circuit for formation of two parallel circuits, in order to avoid overload during accidents of the existing one-circuit main line, eliminate operational restrictions, and improve reliability.

12.1.3 Project Lists

(1) Generation Development Plan

Table 12-1 List of Generation Development Plan Projects

	Plant name	Province	Installed capacity	Project costs	Commissioning	Note
	T failt fiailt	Trovince	(MW)	(MUSD)	year	note
	Lauca	Malanje	2,070	4,300	2018	
	Lomaúm (extension)	Benguela	65	385	2018	
	Luachimo (extension)	Lunda Norte	34	N/A	2020	
<u>ь</u>	Caculo Cabaça	Kwanza Norte	2,100	4,500	2024	
эме	Baynes	Namibe	300	660	2026	
odo.	Quilengue	Kwanza Sul	210	N/A	2028	
Hydropower	Zenzo	Kwanza Norte	950	N/A	2032	
н	Genga	Kwanza Sul	900	N/A	2035	
	Tumulo do Cacador	Kwanza Norte	453	1,041	2038	
	Biopio (Repower)	Benguela	29	N/A	N/A	
	Matala(Repower)	Lubango	15	N/A	N/A	
	Soyo 1 CCGT	Zaire	750	900	2017-2018	
	Soyo 2 CCGT	Zaire	Apprx.750	N/A	2021-2022	
	Lobito 1 CCGT	Benguela	Apprx.750	900	2027-2029	
wer	Lobito 2 CCGT	Benguela	Apprx.750	900	2031-2034	
por	Namibe 1 CCGT	Namibe	Apprx.750	900	2036-2038	
Thermal power	Lobito 3 CCGT	Benguela	Apprx.375	450	2040	
her	Cacuaco GT	Luanda	125 x 6	81 x 6	2022-2037	
T	Sambizanga GT	Luanda	125 x 3	81 x 3	2025-2037	
	Quileva GT	Benguela	125 x 6	81 x 6	2027-2035	
	Soyo-SS GT	Zaire	125 x 3	81 x 3	2030-2037	
	Beniamin Wind	Benguela	52	N/A	2028	
	Benguela Solar	Benguela	10	N/A	2028	
	Cacula Wind	Huila	88	N/A	2029	
	Cambongue Solar	Namibe	10	N/A	2029	
	Chibia Wind	Huila	78	N/A	2030	
	Caraculo Solar	Namibe	10	N/A	2030	
	Calenga Wind	Huambo	84	N/A	2031	
	Catumbela Solar	Benguela	10	N/A	2031	
	Gasto Wind	Kwanza Norte	30	N/A	2032	
ble	Lobito Solar	Benguela	10	N/A	2032	
Renewable	Kiwaba Nzoji I Wind	Malanje	62	N/A	2033	
tene	Lubango Solar	Huila	10	N/A	2033	
Ĥ	Kiwaba Nzoji II Wind	Malanje	42	N/A	2034	
	Matala Solar	Huila	10	N/A	2034	
	Mussede I Wind	Kwanza Sul	36	N/A	2035	
	Quipungo Solar	Huila	10	N/A	2035	
	Mussede II Wind	Kwanza Sul	44	N/A	2036	
	Nharea Wind	Bie	36	N/A	2036	
	Techamutete Solar	Huila	10	N/A	2036	
	Tombwa Wind	Namibe	100	N/A	2037	
	Namacunde Solar	Cunene	10	N/A	2037	

(2) Transmission Development Plan

	Year						
Project#	of	Area	Voltage	Substation	Capacity	Cost	Remarks
-	operation		(kV)	Name	(MVA)	(MUS\$)	
1	2020	Cuanza Sul	400	Waco kungo	450	40.5	450 x 1, under construction(China)
2	2020	Huambo	400	Belem do Huambo	900	51.3	450 x 2, under construction(China)
3	2022	Luanda	400	Bita	900	51.3	450 x 2, under construction(Brazil)
4	2025	Cuanza Sul	400	Waco kungo	450	40.5	upgrade 450 x 1
5	2025	Luanda	400	Bita	450	40.5	upgrade 450 x 1
6	2025	Zaire	400	N'Zeto	450	40.5	upgrade 450 x 1
7	2025	Luanda	400	Viana	2,790	96.6	upgrade 930 x 3
8	2025	Bengo	400	Kapary	450	40.5	upgrade 450 x 1
9	2025	Huila	400	Lubango2	900	51.3	450 x 2, Pre-FS implemented*
10	2025	Huila	400	Capelongo	900	51.3	450 x 2
11	2025	Huila	400	Calukembe	120	32.6	60 x 2
12	2025	Benguera	400	Nova Biopio	900	51.3	450 x 2
13	2025	Southern	400	Cahama	900	51.3	450 x 2
14	2025	Eastern	400	Saurimo	900	51.3	450 x 2, under Pre-FS
15	2025	Lunda Norte	400	Xa-Mute ba	360	38.3	180 x 2, under Pre-FS
16	2025	Huila	400	Quilengues	120	32.6	60 x 2
17	2025	Cuanza Sul	400	Gabela	900	51.3	450 x 2
18	2025	Luanda	400	Sambizanga	2,790	96.6	930 x 3
19	2025	Malanje	400	Lucala	900	51.3	450 x 2
20	2025	Chipindo	400	Chipindo	360	38.3	180 x 2
21	2030	Bengo	400	Kapary	450	40.5	upgrade 450 x 1
22	2030	Luanda	400	Catete	450	40.5	upgrade 450 x 1
23	2035	Cunene	400	Ondjiva	900	51.3	450 x 2, Pre-FS implemented*
24	2035	Luanda	400	Bita	450	40.5	upgrade 450 x 1
25	2035	Malanje	400	Lucala	450	40.5	upgrade 450 x 1
		Total			19,590	1,171.4	

Table 12-2 List of 400 kV Substation Projects

Pre-FS implemented*:Candidate site were selected by USTDA and DBSA.

	Year						
Project#	of	Area	Voltage	Substation	Capacity	Cost	Remarks
Project#	-	Alea	U		(MVA)		Remarks
1	operation 2018	Ronguolo	(kV) 220	Name Benguela Sul	(MVA) 240	(MUS\$) 24.5	120 x 2, under construction(China)
2	2018	Benguela Luanda	220	Bita	240	24.5	
		Zaire	-		-		120 x 2, under construction(Brazil)
3	2020		220	Tomboco	40	13.7	20 x 2
4	2020	Malanje	220	Capanda Elevadora	130	18.6	65 x 2, upgrade
5	2021	Luanda	220	Cacuaco	480	37.5	240 x 2, upgrade
6	2022	Luanda	220	Zango	360	31.0	120 x 3
7	2022	Malanje	220	Malanje 2	240	24.5	120 x 2
8	2022	Cuanza Sul	220	Waco Kungo	60	14.8	60 x 1
9	2022	Cuanza Sul	220	Quibala	120	18.1	60 x 2
10	2022	Benguela	220	Cubal	120	18.1	60 x 2
11	2022	Huíla	220	Lubango	240	24.5	120 x 2, Pre-FS implemented*
12	2022	Huíla	220	Matala	120	18.1	60 x 2, Pre-FS implemented*
13	2022	Huíla	220	Capelongo	60	14.8	60 x 1
14	2022	Cuando-Cubango	220	Cuchi	60	14.8	60 x 1
15	2022	Cuando-Cubango	220	Menangue	240	24.5	120 x 2
16	2022	Namibe	220	Namibe	240	24.5	120 x 2, Pre-FS implemented*
17	2022	Namibe	220	Tombwa	120	18.1	60 x 2, Pre-FS implemented*
18	2022	Lunda Norte	220	Lucapa	60	14.8	60 x 1
19	2022	Lunda Norte	220	Dundo	120	18.1	60 x 2, under Pre-FS
20	2022	Lunda Sur	220	Saurimo	120	18.1	60 x 2, under Pre-FS
21	2022	Uíge	220	Uíge	240	24.5	120 x 2, upgrade
22	2025	Luanda	220	Golfe	360	31.0	120 x 3
23	2025	Luanda	220	Chicara	480	37.5	240 x 2
23	2025	Bengo	220	Caxito	60	14.8	60 x 1
25	2025	Bengo	220	Maria Teresa	60	14.8	60 x 1
25	2025	Cuanza Sul	220	Porto Amboim	120	14.8	60 x 2
20	2025	Cuanza Sul	220	Cuacra	60	14.8	60 x 2
27	2025	Benguela	220	Catumbela	120	14.8	60 x 2
28	2025	Benguela	220	Bocoio	120	18.1	60 x 2
			-		-		
30	2025	Huambo	220	Ukuma	60	14.8	60x 1, Pre-FS implemented*
31	2025	Huambo	220	Catchiungo	120	18.1	60 x 2, Pre-FS implemented*
32	2025	Bié	220	Andulo	60	14.8	60 x 1
33	2025	Huíla	220	Nova Lubango	120	18.1	60 x 2
34	2025	Huíla	220	Caluquembe	60	14.8	60 x 1
35	2025	Huíla	220	Quilengues	60	14.8	60 x 1
36	2025	Huíla	220	Tchamutete	120	18.1	60 x 2, Pre-FS implemented*
37	2025	Cune ne	220	Ondjiva	120	18.1	60 x 2, Pre-FS implemented*
38	2025	Cune ne	220	Cahama	60	14.8	60 x 1, Pre-FS implemented*
39	2025	Cune ne	220	Xangongo	60	14.8	60 x 1, Pre-FS implemented*
40	2025	Moxico	220	Luena	240	24.5	120 x 2, under Pre-FS
41	2025	Lunda Norte	220	Xa-Mute ba	120	18.1	60 x 2
42	2025	Luanda	220	Viana	600	44.0	300 x 2, upgrade
43	2025	Luanda	220	Camama	120	18.1	120 x 1, upgrade
44	2025	Luanda	220	Sambizanga	240	24.5	240 x 1, upgrade
45	2025	Kuanza Norte	220	N' Dalatando	80	15.9	40 x 2, upgrade
46	2027	Moxico	220	Cazombo	60	14.8	60 x 1
47	2027	Moxico	220	Luau	60	14.8	60 x 1
48	2027	Lunda Sur	220	Muconda	60	14.8	60 x 1
49	2027	Bié	220	Kuito	120	18.1	120 x 1, upgrade
50	2030	Luanda	220	Futungo de Belas	120	18.1	120×1 , upgrade
				ra salastad by USTDA			, upg.uut

List of 220 kV Substation Projects (1) **Table 12-3**

Pre-FS implemented*:Candidate site were selected by USTDA and DBSA.

	Year					_	
Project#	of	Area	Voltage	Substation	Capacity	Cost	Remarks
. J * * *	operation		(kV)	Name	(MVA)	(MUS\$)	
51	2030	Uíge	220	Negage	180	21.3	60 x 3
52	2030	Cabinda	220	Cabinda	240	24.5	120x 2
53	2030	Cabinda	220	Cacongo	120	18.1	60 x 2
54	2030	Benguela	220	Alto Catumbela	120	18.1	60 x 2
55	2030	Benguela	220	Baria Farta	120	18.1	60 x 2
56	2030	Huambo	220	Bailundo	120	18.1	60 x 2
57	2030	Huíla	220	Chipindo	60	14.8	60 x 1
58	2031	Zaire	220	M'Banza Congo	180	21.3	60 x 3, upgrade
59	2032	Cune ne	220	Ondjiva	120	18.1	120 x 1, upgrade
60	2032	Lunda Sur	220	Saurimo	120	18.1	120 x 1, upgrade
61	2034	Luanda	220	Cacuaco	240	24.5	240 x 1, upgrade
62	2035	Luanda	220	PIV	480	37.5	240 x 2
63	2035	Kuanza Norte	220	Lucala	120	18.1	60 x 2
64	2035	Uíge	220	Sanza Pombo	120	18.1	60 x 2
65	2035	Bié	220	Camacupa	60	14.8	60 x 1
66	2035	Cuando-Cubango	220	Cuito Cuanavale	60	14.8	60 x 1
67	2035	Luanda	220	Cazenga	120	18.1	120 x 1, upgrade
68	2035	Bengo	220	Kapary	120	18.1	120 x 1, upgrade
69	2035	Benguela	220	Catumbela	240	24.5	120 x 2, upgrade
70	2036	Luanda	220	Sambizanga	240	24.5	240 x 1, upgrade
71	2036	Uíge	220	Maquela do Zombo	40	13.7	40 x 1, upgrade
72	2036	Huambo	220	Belém do Dango	240	24.5	240 x 1, upgrade
73	2036	Lunda Norte	220	Dundo	120	18.1	120 x1, upgrade
74	2037	Cuanza Sul	220	Gabela	60	14.8	60 x 1, upgrade
75	2038	Benguela	220	Cubal	240	24.5	120 x 2, upgrade
76	2040	Cuando-Cubango	220	Mavinga	60	14.8	60 x 1
77	2040	Malanje	220	Malanje 2	120	18.1	120 x 1, upgrade
78	2040	Huíla	220	Caluquembe	60	14.8	60 x 1, upgrade
		Total			11,810	772.4	

 Table 12-4
 List of 220 kV Substation Projects (2)

	Year					number	Power	Line		
Project#	of	Area	Voltage	Starting point	End point	of	Flow	Length	Cost	Remarks
5	operation		(kV)	01		circuit	(MVA)	(km)	(MUS\$)	
1	2020	Central	400	Lauca	Waco kungo	1	307	177	138.1	under construction(China)
2	2020	Central	400	Waco kungo	Belem do Huambo	1	242	174	135.7	under construction(China)
3	2020	Northern	400	Cambutas	Bita	1	580	172	134.2	under construction(Brazil)
4	2022	Northern	400	Catete	Bita	2	504	54	52.9	under construction(Brazil)
5	2025	Northern	400	Cambutas	Catete	1	791	123	95.9	Dualization
6	2025	Northern	400	Catete	Viana	1	579	36	28.1	Dualization
7	2025	Northern	400	Lauca	Capanda elev.	1	518	41	32.0	Dualization
8	2025	Northern	400	Kapary	Sambizanga	2	1130	45	44.1	For New Substation
9	2025	Northern	400	Lauca	Catete	2	868	190	186.2	Changing Connection Plan
10	2025	Central	400	Lauca	Waco kungo	1	307	177	138.1	Dualization
11	2025	Central	400	Waco kungo	Belem do Huambo	1	242	174	135.7	Dualization
12	2025	Central	400	Cambutas	Gabela	2	484	131	128.4	Pre-FS implemented*
13	2025	Central	400	Gabela	Benga	2	848	25	24.5	Pre-FS implemented*
14	2025	Central	400	Benga	Nova Biopio	2	550	200	196.0	Pre-FS implemented*
15	2025	Southern	400	Belem do Huambo	Caluquembe	2	606	175	171.5	Pre-FS implemented*
16	2025	Southern	400	Caluquembe	Lubango2	2	666	168	164.6	Pre-FS implemented*
17	2025	Southern	400	Belem do Huambo	Chipindo	2	264	114	111.7	
18	2025	Southern	400	Chipindo	Capelongo	2	190	109	106.8	
19	2025	Southern	400	Nova Biopio	Quilengues	2	840	117	114.7	Pre-FS implemented*
20	2025	Southern	400	Quilengues	Lubango2	2	772	143	140.1	Pre-FS implemented*
21	2025	Southern	400	Lubango2	Cahama	2	450	190	186.2	Pre-FS implemented*
22	2025	Eastern	400	Capanda_elev	Xa-Muteba	2	590	266	260.7	
23	2025	Eastern	400	Xa-Mute ba	Saurimo	2	510	335	328.3	under Pre-FS
24	2027	Southern	400	Capelongo	Ondjiva	2	292	312	305.8	
25	2027	Southern	400	Cahama	Ondjiva	2	442	175	171.5	
26	2027	Southern	400	Cahama	Ruacana	2	409	125	122.5	International Interconnection
	Total								3,654.2	

 Table 12-5
 List of 400 kV Transmission Line Projects

Pre-FS implemented*:Candidate route were selected by USTDA and DBSA.

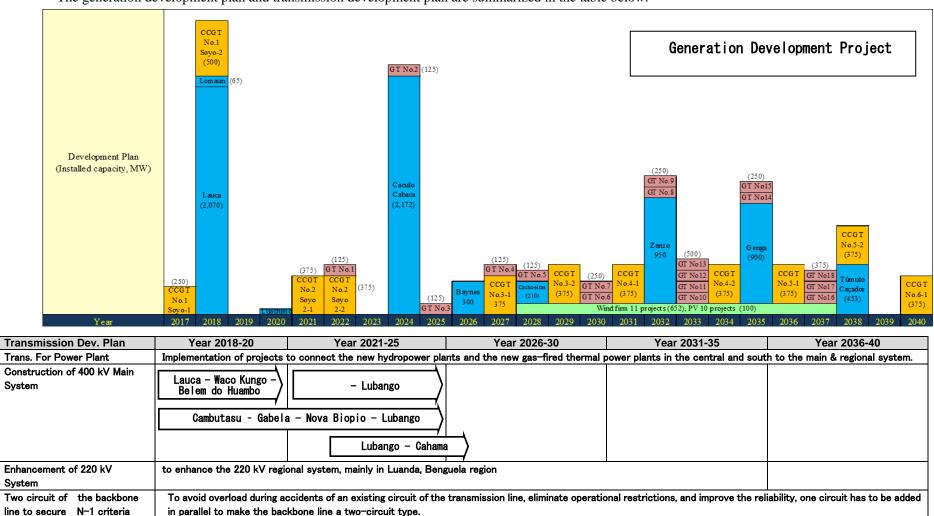

	Year					number	Required	Line		
Project#	of	Area	Voltage	Starting point	End point	of	Capcity	Length	Cost	Remarks
1 lojectii	operation	mea	(kV)	Starting point	End point	circuit	(MVA)	(km)	(MUS\$)	KellikiKS
1	2020	Southern	220	Lubango2	Lubango	2	360	30	13.5	Pre-FS implemented*
2	2020	Southern	220	Lubango2	Namibe	2	360	162	72.9	Pre-FS implemented*
3	2020	Southern	220	Namibe	Tombwa	2	120	97	43.7	Pre-FS implemented*
4	2020	Eastern	220	Saurimo	Lucapa	2	300	157	70.7	Pre-FS implemented*
5	2020	Eastern	220	Lucapa	Dundo	2	240	135	60.8	Pre-FS implemented*
6	2020	Northern	220	Bita	Camama	2	840	21	9.5	The TS implemented
7	2022	Northern	220	Catete	Zango	2	360	40	18.0	
8	2022	Northern	220	Capanda elev.	Maranje	2	360	110	49.5	
9	2022	Central	220	Gabela	Alto Chingo	1	300	81	29.2	Dualization
10	2022	Central	220	Quibala	Waco Kungo	2	120	92	41.4	Duumation
11	2022	Central	220	Lomaum	Cubal	2	360	2	0.9	
12	2022	Southern	220	Lubango	Matala	2	120	168	75.6	Pre-FS implemented*
12	2022	Southern	220	Matala HPS	Matala	1	41	5	1.8	upgarade
13	2022	Southern	220	Capelongo	Cuchi	2	420	91	41.0	upgarade
15	2022	Southern	220	Cuchi	Menongue	2	360	94	42.3	
15	2022	Northern	220	Sambizanga	Golfe	2	360	7	3.2	
10	2025	Northern	220	Kapary	Caxito	2	60	26	11.7	
17	2025	Northern	220	N'Zeto	Tomboco	2	220	5	2.3	For Substattion inserted
18	2025	Northern	220	M'banza Congo	Tomboco	2	220	5	2.3	For Substattion inserted
20	2025	Northern	220	Sambizanga	Chicala	2	480	7	3.2	101 Substatuon liisetteu
20	2025	Northern	220	Cate te	Maria Teresa	2	480 60	51	23.0	
21	2023	Central	220	Alto Chingo	Cuacra	2	60	25	11.3	
22	2025	Central	220	Alto Chingo	Port Amboim	2	120	23 60	27.0	
23	2025		-	_		1		18		Dustration
		Central	220	Quile va	Nova Biopio	-	550		6.5	Dualization
25	2025	Central	220	Quileva	Catumbela	2	240	8	3.6	F 01 / 41 / 1
26 27	2025 2025	Central	220 220	Nova Biopio	Bocoio Bocoio	2	120 120	5	2.3 2.3	For Substattion inserted
	2025	Central		Lomaum	Ukuma	2			2.3	For Substattion inserted
28 29	2025	Central	220 220	Belem do Huambo		2	60 720	66 76	29.7 34.2	Etware ethan
-		Central	-	Belem do Huambo	Catchiungo					Strengthen
30 31	2025 2025	Central	220 220	Catchiungo	Kuito	2	480 60	85 110	38.3	Strengthen
31		Central		Kuito	Andulo	2		97	49.5 43.7	Day DC incolorments d*
32	2025 2025	Southern	220 220	Cahama	Xangongo	1	180 120	97 97	43.7 34.9	Pre-FS implemented*
33		Southern		Ondjiva	Xangongo					Pre-FS implemented*
34	2025 2025	Southern	220 220	Capelongo Saurimo	Tchamute te Lue na	2	120 240	98 265	44.1 119.3	Dro ES implemente d*
35	2025	Eastern Eastern	220	Saurimo	Muconda	2	180	205 187	84.2	Pre-FS implemented*
30	2027	Eastern	220	Muconda	Luau	2	120	187	84.2 51.8	
37	2027		220	Luau	Cazombo	2	60	264	51.8 118.8	
38 39	2027	Eastern Central	220	Cubal	Alto Catumbela	2	120	264 47	21.2	
<u> </u>	2030		220		Bailundo	2	120	47 66	21.2	
40	2030	Central	220	Catchiungo Benguela Sul	Baia Farta	2	120	30	13.5	
41 42	2030	Central Northern	220	Uige	Negage	2	620	5	2.3	For Substattion inserted
42	2030	Northern	220	Pambos de Sonhe	88	2	620 620	5	2.3	For Substattion inserted
43	2030	Northern	220	Viana	Negage PIV	2	620 480	5 7	3.2	FOI SUBSTATION INSERTED
44 45	2035	Northern	220		Sanza Pombo	2	120	109	3.2 49.1	
				Negage Kuito		2			49.1 65.3	
46	2035	Central	220	Kuito	Camacupa		60	145		
47	2035	Southern	220	Menongue	Cuito Cuanavale	2	120	189	85.1	
48	2035	Southern	220	Cuito Cuanavale	mavinga	2	60	176	79.2	
		un la ma nta dit		Total	USTDA and DRSA			3,746	1,667.6	

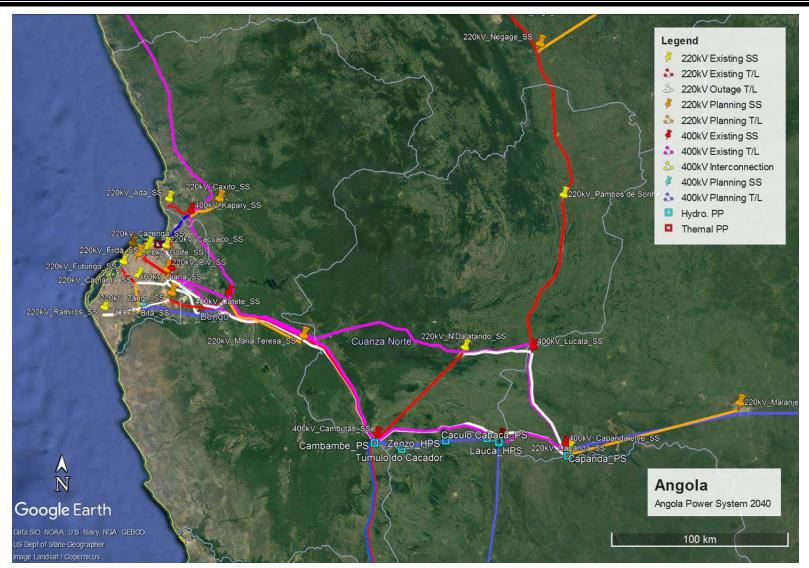
Table 12-6List of 220 kV Transmission Line Projects

Pre-FS implemented*:Candidate route were selected by USTDA and DBSA.

Project#	Year of operation	Area	Voltage (kV)	Starting point	End point	number of circuit	Generation Capacity (MVA)	Line Length (km)	Cost (MUS\$)	Remarks
1	2025	Northern	400	HPP Caculo Cabaça	Cambutas	2	496	54	52.9	under construction(China)
2	2025	Northern	400	HPP Caculo Cabaça	Lauca	2	1326	25	24.5	
3	2025	Northern	400	TPP Soyo 2	Soyo	2	750	5	4.9	
4	2025	Central	400	TPP Lobito CCGT #1	Nova_Biopio	2	750	23	22.5	
5	2025	Northe rn	220	TPP Cacuaco GT #1	Cacuaco	2	375	5	2.3	
6	2025	Northe rn	220	TPP Cacuaco GT #2	Cacuaco	2	375	5	2.3	
7	2025	Northern	220	TPP Boavista GT #3	Sambizanga	2	375	5	2.3	
8	2030	Northern	220	HPP Quilengue (5)	Gabera	2	210	37	16.7	
9	2030	Southern	400	HPP Baynes	Cahama	2	300	195	191.1	
10	2030	Central	220	TPP Quileva GT #4	Quileva	2	250	1	0.5	
11	2030	Central	220	TPP Quileva GT #5	Quileva	2	250	1	0.5	
12	2030	Central	220	TPP Quileva GT #6	Quileva	2	250	1	0.5	
13	2030	Northe rn	400	TPP Soyo GT #7	Soyo	2	375	5	4.9	
14	2035	Northe rn	400	HPP Zenzo	Cambutas	2	950	41	40.2	
15	2035	Northe rn	400	HPP Genga	Benga Switch-yard	2	900	30	29.4	
16	2035	Central	400	TPP Lobito CCGT #2	Nova_Biopio	2	720	23	22.5	
17	2035	Southern	220	HPP Jamba Ya Mina	Matala	1	205	86	31.0	
18	2035	Southern	220	HPP Jamba Ya Oma	HPP Jamba Ya Mina	1	79	37	13.3	
19	2040	Northern	220	HPP Túmulo Caçador	Cambutas	2	453	16	7.2	
20	2040	Southern	220	TPP Namibe CCGT #3	Namibe	2	750	17	7.7	
21	2040	Central	400	TPP Lobito CCGT #4	Nova_Biopio	2	375	23	22.5	
Total									499.4	

 Table 12-7
 List of Transmission Line Projects for Newly Developed Power Sources

The generation development plan and transmission development plan are summarized in the table below.


Figure 12-1 Summary of Generation Development Plan & Transmission Development Plan

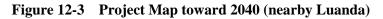

The Project for Power Development Master Plan in the Republic of Angola Final Report

Figure 12-2 Project Map toward 2040

The Project for Power Development Master Plan in the Republic of Angola Final Report

The Project for Power Development Master Plan in the Republic of Angola Final Report

Figure 12-4 Project Map toward 2040 (Northern Region from Luanda)

The Project for Power Development Master Plan in the Republic of Angola Final Report

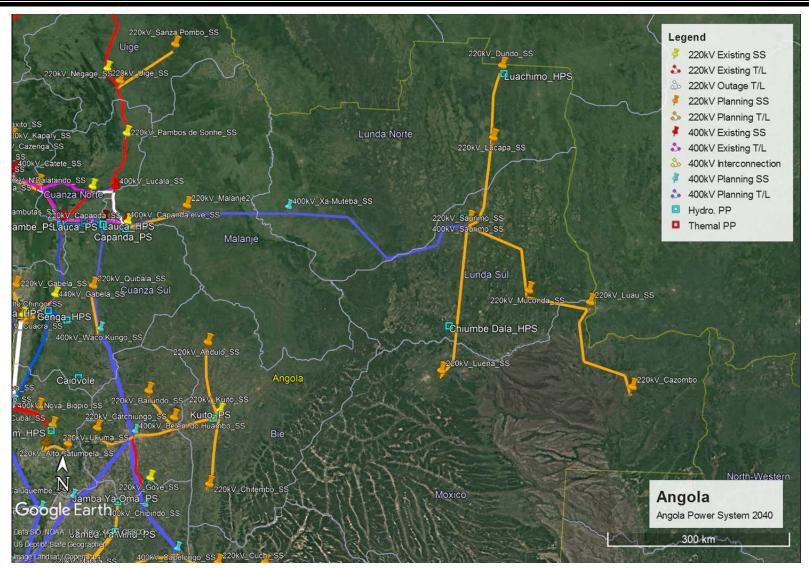
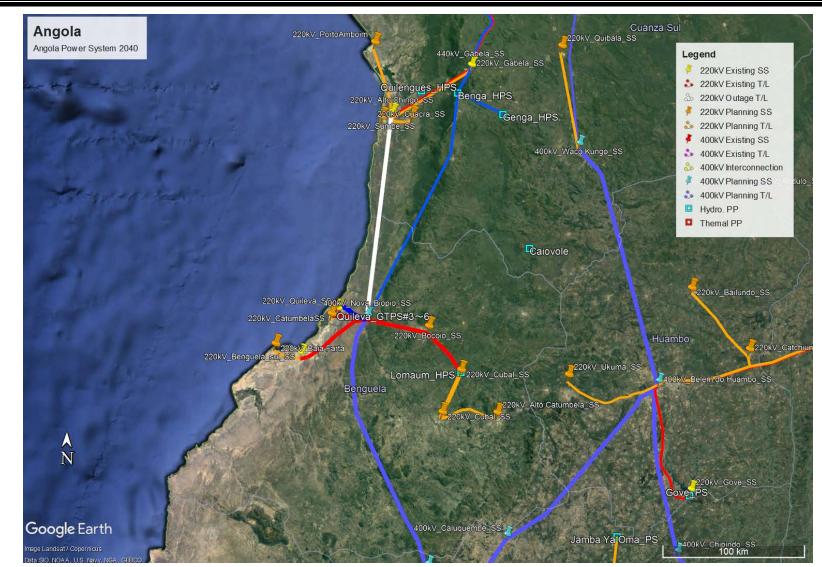
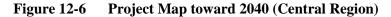




Figure 12-5 Project Map toward 2040 (Western Region from Luanda)

The Project for Power Development Master Plan in the Republic of Angola Final Report

The Project for Power Development Master Plan in the Republic of Angola Final Report

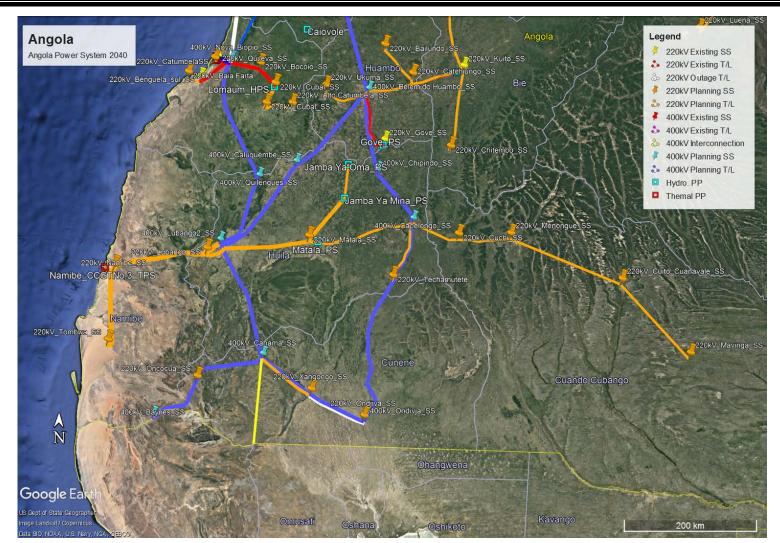


Figure 12-7 Project Map toward 2040 (South Region)

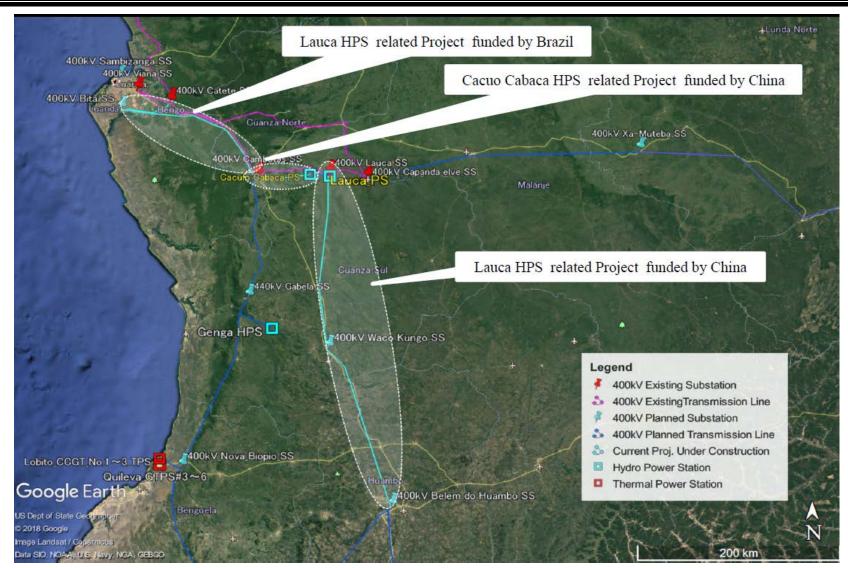


Figure 12-8 Current Project under Construction

12.2 Projects to which Japan can contribute from a technical standpoint

12.2.1 South Transmission System Enhancement Project

Because the power transmission system enhancement project in the northern system is already underway with China and Brazilian funds, Japan can cooperate more meaningfully by assisting other power transmission enhancement projects in the central and southern regions. In this region, JICA currently supports renovation of the port of Namibe by grant aid. Therefore, JICA can contribute to the economic growth of this region by improving power access along with logistics. When Japan provides financial cooperation, however, the participation of Japanese companies should be considered, which in turn raises the issue of safety.

Figure 12-8 shows the transmission system enhancement plan superimposed on an Angolan risk map obtained from the Ministry of Foreign Affairs Overseas Safety Website.

Two possibilities can be found from this figure. The first is the development of the CCGT power near Lobito Port in Benguela Province and the development of a 400 kV power line spanning a short 23 km distance to the 400 kV Nova BioPio substation.

We had already confirmed, however, during our second regional survey of Benguela and Huambo, that the Chinese side was beginning to work on power transmission system enhancements in that area.

The second possibility is the development of a 220 kV transmission line connecting a CCGT plant near Namibe Port to the 220 kV Namibe substation and the 400 kV Lubango 2 substation. We investigated the route of the transmission lines along the national roads in this area in our 3rd regional survey and confirmed that there were no big problems in terms of safety. We therefore think this second possibility would be preferable for scale, and would like to recommend it. We also considered an optional inclusion of a 220 kV Tombwa substation.

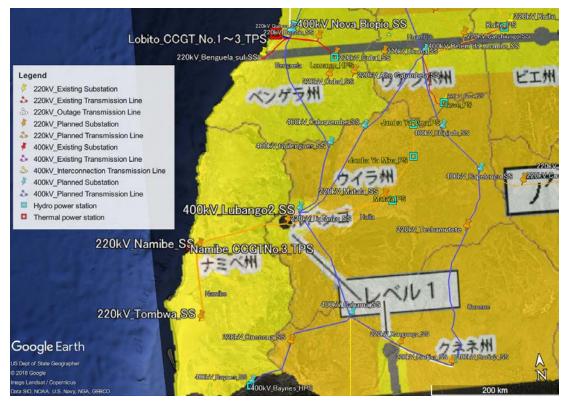


Figure 12-9 South Transmission System Enhancement Project Map

The Project for Power Development Master Plan in the Republic of Angola Final Report

Table 12-8 List of South Transmission System Enhancement Projects						
Item	Voltage	Name of Facilities	Overview	Cost (MUS\$)		
	400kV	Lubango2	900MVA	51.3		
Substation	220kV	Namibe	240MVA	24.5		
220kV		Tombwa	120MVA	18.1		
Transmmission	220kV	Lubango2-Namibe	2cct,154km	68.0		
Line	220kV	Namibe-Tombwa	2cct,110km	49.5		
			Project Total	211.4		

Table 12-8 List of South Transmission System Enhancement Projects	
---	--

12.2.2 New CCGT Project

As mentioned in Chapter 6, it will be necessary to introduce CCGT as a middle demand power supply in Angola in order to realize the optimal generation mix. Japanese manufacturers have the world's top-class technology in CCGT and are ideally positioned to contribute through technical cooperation. A typical CCGT project is shown in Table 12-9.

Item	Contents		
Project	New CCGT Construction		
Installed Capacity	Approx. 750 MW/plant		
Project Costs*	Approx. 900 millUSD		
Project Boundary	CCGT main machine, auxiliaries (chiller, condenser, fuel receiving tan		
	etc.), civil work, architectural work, etc.		
Project Type	EPC, BOT, IPP		
* The above construction cost is CCGT project only. Considering fuel consumption, it is necessary t			
construct the following fuel supply facilities.			
Note	Construction Costs for LNG Tank: 100 150 millUSD/unit		

Table 12-9 CCGT Project (example)

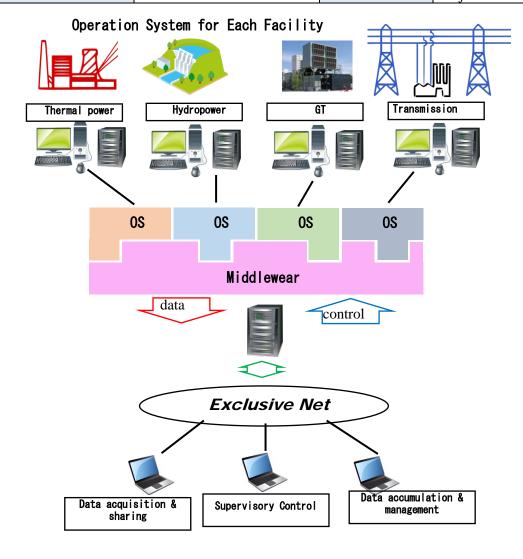
construct the following fuel supply facilities.				
Note	Construction Costs for LNG Tank: 100-150 millUSD/unit			
(Costs based on investigation	Construction Costs for Gas Pipeline: 4-13 millUSD/km			
in Japan)	FSRU (Floating Storage Regasification Unit): 250 - 330 millUSD			
	(Capacity 140,000 m3)			
	Construction Costs for LPG Tank: 10-30 millUSD/unit (Capacity 20,000			
	m3)			

<Tank matter>

An approximately 750-MW-class CCGT requires about 50,000 m3 of LNG per month. One 125,000 m3 LNG tank can therefore store more than two months of fuel. For backup purposes, a system should ideally have 2 tanks. With 2 tanks, fuel can be supplied to up to about 4 CCGT power plants.

When LPG is used as a fuel, about 30,000 tons of LPG is required per month. Unlike LNG, LPG is procured through diversified routes and accordingly can be stored in smaller quantities. The maintenance of total tank capacities of 20,000 tons is thought to be sufficient, with backups included.

12.2.3 New GT Construction as a Peak Demand Power Supply & Introduction of SCADA for GT Control


An examination of the optimal generation mix clearly showed that it will be necessary to introduce GT to some extent as a peak demand power supply. Japanese manufacturers are ideally suited to introduce the technology, as they are the world's most technologically advanced entities in this field.

Peak demand power supply must incur a low power generation cost at times of low utilization and requires a function to allow rapid load fluctuation when peak demand occurs. This latter function can be realized by introducing a control system such as SCADA for dispatching the power supply. As a system enabling the easy collection of data on power generation and demand, SCADA also leads to more efficient system operation and ensures system stability.

Japan's example experience in this field makes Japan an ideal source of technical cooperation.

Table 12-10 Construction of Peak Demand Power Supply & Introduction of SCADA New GT Construction Project SCADA Introduction Project

riew di construction i roject			1 ouuchon 1 rojeet
Project	New GT Construction	Project	SCADA development
			& introduction
Installed Capacity	Approx. 100 MW/plant	Project Costs	Depends on the project
Project Costs	Approx. 60-80 millUSD/plant		scale
Project Type	EPC, BOT	Project Type	Technical Assistance
			Project

12.2.4 Project to Repower Old Hydropower Plants

The Biópio hydropower plant and Matala hydropower plant in Angola are medium-sized plants that supply the core power for each region. Both, however, were developed as far back as the 1950s and suffer from problems such as equipment damage and efficiency reductions due to aging and other causes. Given these background conditions, we believe that the regional power supply could be strengthened by diagnosing the equipment at these hydropower plants and rehabilitating them based on the results.

Japan's ample experience in repowering aged hydropower plants makes Japan as an ideal source of technical cooperation.

Name	Province	Municipality	Installed capacity (MW)	Available capacity (MW)	Commissioning Year	Status
Biópio	Benguela	Lobito	14.58 (4x 3.645)	12.0	1955	The penstock is damaged and no water can be supplied to the turbine. Operations at the power plant are therefore completely stopped.
Matala	Huíla	Matala	40.8 (3x 13.6)	27.2	1959	There were plans to install three generators, but one of the three has not been installed. The efficiency of the remaining two units is thought to be declining as a result.

 Table 12-11
 Current Status of the HPP

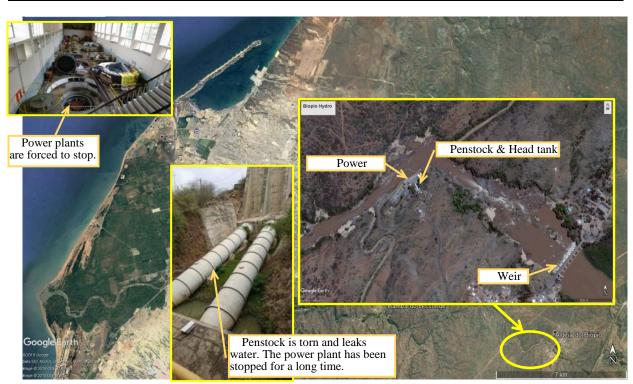


Figure 12-10 Biópio HPP's Current Status

12.3 Advice to MINEA, RNT, PRODEL, ENDE and IRSEA's Action Plan on the Power Development Master Plan

12.3.1 Action Plan for the Power Development Master Plan

The Angolan action Plans on the Power Development Master Plan are summarized in the following table.

Target	Item Action Plan in Detail				
Action plans related	Establishment of an	Establishment of the Institute of Power			
to maintenance of	organization to				
the Power Master	formulate PDMP	Development Planning (IPDP) <tentative name=""></tentative>			
Plan		On a sing maining to the Demon Demond Fernand			
Plan	Continuing to revise	Ongoing revisions to the Power Demand Forecast			
	PDMP	> To collect necessary data such as economic			
		indicators			
		> To collect demand data and improve accumulation			
		method			
		> Hearing customers			
		Ongoing revisions to the Generation Development Plan			
		Review of fuel procurement plans			
		> Collection of the latest technical information on			
		hydropower & thermal power			
		> Ongoing study on the occupancy hydropower			
		potential			
		Maintaining the Best Generation Mix			
		Ongoing revisions of the Transmission Development Plan			
		> Ongoing analysis of the supply-demand imbalance			
		by region			
		Review of transmission facility specifications			
	~ ~ .	Review of power flow analysis			
Action plans related	Company Operation	> PDMP deployment and reflection of PDMP in the			
to execution of	& Project	medium-term plans of the respective entities			
development	management				
projects	Management and	Improvement of the tariff system			
	reform of fund	Study on utilizing the foreign loan			
	procurement	Study on introducing private sector funds			
Others	Reform of	Introduction of SCADA			
	dispatching	Reform of central and regional dispatching			
	organizations	organizations			

 Table 12-12
 Action Plans for the Power Development Master Plan

The action plans will be described in detail from the next section.

12.3.2 Establishment of an Organization to Formulate and Continuously Revise the PDMP

The preconditions for the formulation of Power Development Master Plan such as the power demand, power generation situation, project schedule, and electric power technology in general all evolve and change every day. Given the ever-changing nature of these preconditions, the master plan must be reviewed at least every three to five years. A dedicated department will be required to accomplish this.

At present, Angola has individually arranged an electricity planning department in each public corporation, and MINEA consolidates the examination results within the departments. This regime is not necessarily efficient or effective. In the near future we should establish a department with motivated staff within MINEA to oversee the power planning function (demand forecast, power development plan, transmission and distribution development plan), revise the master plan consistently, and develop human resources. We need to proceed with the preparations for the establishment such a department immediately.

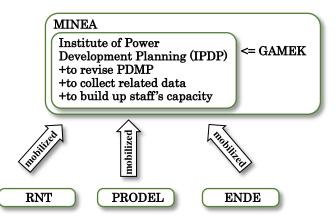


Figure 12-11 Example of Organization to Formulate PDPM

12.3.3 Improvement Activities to Establish a Method for Accurate Power Demand Forecasts

Angola currently lacks the accumulated data needed to formulate power demand forecasts. To improve the Power Development Master Plan in the future, it will be necessary to prepare a system for collecting these data and forecasting power demand more accurately. And to predict and grasp special demand for industrial/commercial use, ENDE will have to grasp customer contract requests, information on factory construction, information on commercial facility development, etc. on the basis of the supply areas of distribution S/S. A hearing system will have to be developed for this purpose.

The following shows an example of a power demand forecasting system.

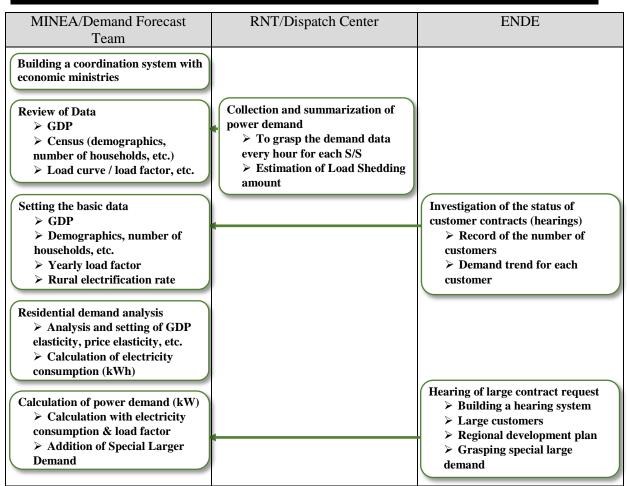


Figure 12-12 Action Plan and Structure for Power Demand Forecast

12.3.4 Ongoing study on the occupancy hydropower potential

The hydropower development plan is an important item to consider when formulating generation development plans, especially in a country with a high ratio of hydropower power supply, like Angola. The most basic data to review when considering a hydropower development plan is focused on the occupancy hydropower potential. Surveys on hydropower potential must be periodically reviewed to keep track of how it has been affected by changes in the natural environment (e.g., weather), social environment, economic conditions, etc. While some hydropower potential has been described in Enagia, we have no clear information on if and how often the surveys have been periodically revised. The Survey Team therefore recommends periodic revisions.

12.3.5 Management and Improvement of Fund Procurement

As mentioned in Chapter 9, the total investment in the power sector amounts to 31,548 MUSD. It would be impossible to cover the entire investment in the power sector with national funds. The following are therefore considered as the most feasible options for enabling fund procurement.

- Introduction of private funds
- Utilization of diverse ODA
- Improvement of electricity tariff structures

(1) Estabishiment of Framework for Introducing Private Funds

One way to reduce the national fiscal burden is to introduce private funds such as IPP. Angola has also enforced a PPP Law from April 2011 with a view of introducing IPP from 2021, but the method for awarding entrance licenses (bidding method), the method for selling contracts, the tariff structure etc. have not yet been made clear. It will therefore be necessary to advance a concrete system design.

(2) Establishing a Method and Scheme to Borrow from Foreign Funds

While Angola has borrowed from European countries and China, support from other aid organizations should henceforth be considered with a view to diversifying fund procurement.

Note, however, that loans provided by OECD member countries and loans provided by aid organizations will entail ideas and financing conditions divergent from those associated with financial assistance from China.

- ➤ The projects developed with foreign funds in Angola are initially constructed by GAMEK. Later, after the operation is started, the equipment is handed over to PRODEL, RNT, and ENDE. Borrowed funds are repaid by the Angolan government, and the implementing agency, the borrower of the funds, and the repayer of the funds all seem to be separate in that sense. Considering the financial burden accompanying borrowing and the availability of government guarantees, etc., it will be necessary to reconsider whether the implementing agency, the borrower of the funds, and the repayer of the funds can be separated in this way.
- ➤ The entities will have to familiarize themselves with the project formation cycle of each donor organization, to know what will be required for the loan reviews, and to have an accurate idea of how long the project will take to implement. With this information, we can decide which projects to request and which ones to develop by ourselves.
- ➢ Government guarantees are necessary for loans from JICA and AfDB. Note, also, that JICA will only implement ODA loans that the partner country officially requests. Therefore, the government of Angola and the agency implementing the project must both establish procedures for approval by the competent authorities and the formal request for the ODA loan.
- The Angolan government, meanwhile, should pay attention to external debt and additionally consider the risk that it will be unable to issue government guarantees. If no government guarantees can be issued, there is a risk that an unavailability of borrowing from outside will bring the development to halt. In such an event, the implementing agency would have to raise the tariff rate and endeavor to enrich its financial content.
- A donor agency wishing to review the case requires an Implementation Report (I/P) report examining the content of the project over a reasonable amount of time and the expense required. JICA, for example, has a system (*) to promote necessary surveys in the project cycle. In order to make use of these, we should be familiar with the project formation cycle of donor agencies.
- * Specifically, a Special Assistance Facility Survey (SAF) in line with JICA's project cycle. Three types are available: Special Assistance for Project Formation (SAPROF), Special Assistance for Project Implementation (SAPI), and Special Assistance for Project Sustainability (SAPS).

Table 12-13 shows an example of a project schedule for arranging a JICA ODA loan for a thermal power plant.

Table 12-13 Flow of Implementation of ODA Loan				
Timetable	Item	Duration		
1. Project Preparation	Fact-finding mission, F/S etc.	1-2 years		
2. Official Loan Request	Follow the official procedures of the financial institutions	•••••		
3. Project formation	Follow the project cycle and make use of an official project formation support system such as SAPROF (🔆).	1-2 years		
4. Appraisal of the project	If necessary, exchange an E/S loan agreement			
5. Exchange of Notes and	Sometimes including E/S loans			
Loan Agreement				
6. Project Implementation		4-7 years		

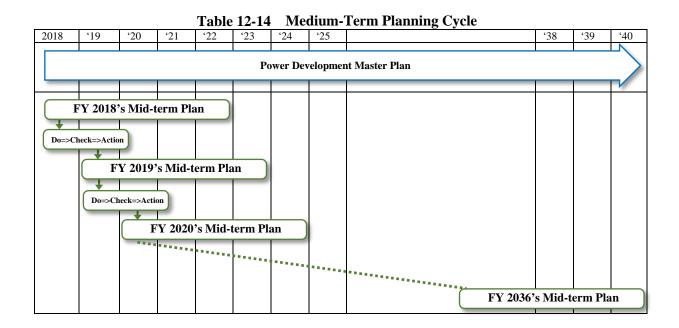
Table 12-13	Flow of Implementation of ODA Loan	

(3) **Improvement of Tariff Structure**

In order to achieve stable power supply and systematic reinforcement of equipment, it is essential that the equipment at each facility be financed with the public power company's own funds. A tariff rate enabling capital recovery must be established to enable this. It will be important, in this regard, to consider action plans by which to realize the tariff rate level examined in Chapter 9.

- ➤ The income and expenses related to the project must be considered when examining the tariff rate. The analysis of LRMC in Section 9.3 and the costs per kWh (including financial costs) are examples. The examination of the tariff rate will require ready access to the accounting data at all times.
- ➤ On the political level, the actual costs to be incurred tend to be forgotten when a deficit is supplemented with a subsidy to curb the electricity tariff rate of distribution. The extent to which subsidies are to be introduced should be decided after calculating the original income and expenses involved in the project.
- ➤ We recommend that the IRSEA evaluate the power generation, power transmission, and distribution costs with reference to the results of this survey and revise the electricity tariff in the future.

12.3.6 Deploying the PDMP and reflecting it in the medium-term plan of each entity


The Power Development Master Plan is a super-long-term plan with a target period of longer than 20 years. As such, the assumptions on which it is based may sharply diverge from the realities over time. Power companies usually deploy and reflect a super-long-term plan into their mid-term plans and prepare annual management plans and implementation plans for individual projects. These plans typically include the following components.

- Power demand forecast
- ➢ Generation development plan
- Transmission development plan
- Capital investment plan (based on the generation & transmission development plan)
- ➢ Fuel Procurement Plan
- ➤ Toll collection plan
- ➢ Fund procurement plan
- ≻ O&M plan
- ➤ Toll collection plan

- Organization & Human Resources Development Plan
- ➤ Other

An annual budget is formulated based on these plans.

Even in Angola, RNT, PRODEL and ENDE each formulate a mid-term plan to realize the aforesaid based on the Power Development Master Plan revised by MINEA. These mid-term plans are often revised every year through a Plan-Do-Check-Action (PDCA) cycle.

12.3.7 Improvement of Power Operation System / Introduction of SCADA

As mentioned earlier, Angola is currently unable to accumulate or consolidate various types of operational data. One of the reasons for this is thought to be the practice of entering most of the data into handwritten datasheets and then digitizing later at the head office.

In several S/Ss and power plants we visited during the survey, the operational data was written out by hand and transferred to the headquarters in hard copy form. Computerized operating systems were introduced but unused for the data-keeping purpose.

The use of the computer systems is likely to be discouraged by the poor uniformity of operating systems from project to project and development to development. Smooth data transmission from system to system appears not to have been adequately considered during system installation.

In order to make effective use of these existing systems, it will be necessary to develop middleware and integrate each system to enable data browsing and transmission.

If this approach is applied, remote control of the machines will become possible, enabling use of the machines for SCADA system construction.

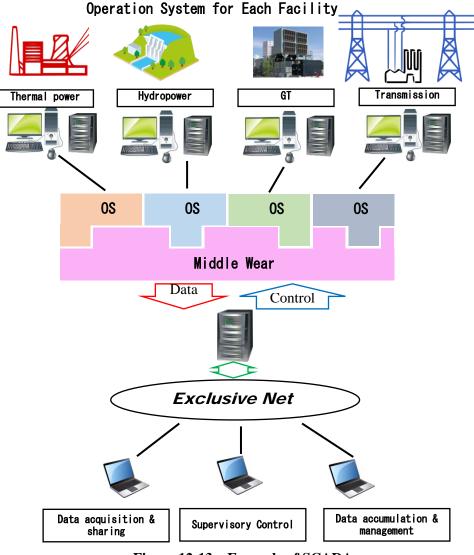


Figure 12-13 Example of SCADA

12.3.8 Improvement of Operation System to Make Use of Power Generation Characteristics

The optimal generation mix is obtained by considering and combining power generation methods with the lowest power generation cost at utilization rates set according to the facility utilization ratios. The cost is cheapest if the GT corresponds to the peak demand area, that is, the low utilization rate area. Meanwhile, it is advantageous to respond to base demand, that is, the large utilization rate area, by hydropower. Conversely, if GT is to be used as a power source capable of responding to peak demand, it will be necessary cease generating electricity by GT over many hours and dispatch a base demand power supply such as hydropower to operate as long as possible. Given that the peak demand is also rapidly changing, the stable supply of electric power will hinge on close and effective control of the time zones in operation. The establishment of the control system will be an extremely important step in making this possible.

Figure 12-13 and Figure 12-14 show TEPCO's load dispatching system. The organization of the whole load dispatching system consists of local load dispatching offices established under a central load dispatching office. Orders to adjust operations, power generation commands, and operation record management procedures are all under the control of the central and local load dispatching offices. Only after establishing such an organization will it be possible to operate a power system according to the characteristics of the power plants. Hence, such an organization will have to be prepared even in Angola.

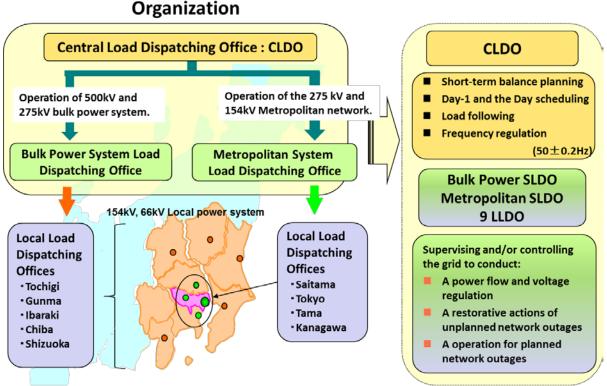


Figure 12-14 TEPCO's Load Dispatching Offices

Chief Supervisor

OScheduling coordination

To develop the next day's operation plan of each generation based on the area demand and the weather forecast. **OGeneration dispatch**

To send instruction of power output to power stations and adjust frequency to 50Hz.

O Recording management

To aggregate the several kinds of mainly performance record regarding the power demand, operation of generators, event of system operations, power failures, and so on.

Figure 12-15 Staffing of Load Dispatching Office

12.3.9 Establishment of standards for transmission and substation facilities

Since we have not clearly set up facility planning criteria in Angola at this time, we have set standards for transmission line type / size, transformer capacity, number of units. However in the future, the standard for transmission facilities taking account of regional environmental characteristics is necessary to be established.

The provisional transmission and substation planning standards for this time are shown in Table 12 15 and Table 12 16.

(Each conductor thermal capacity was calculated by Cigre formula according to allowable current calculation condition of conductors in Angola.)

Table 12-13 The standard for Substation facilities						
Voltage (Primary/Secondary)	Maximum Number per Substation	Transformer Capacity (MVA)	Remarks			
400/220	3	450	usual			
		930 60	heavy load rural			
220/60	3	120	usual			
		240	heavy load			

 Table 12-15 The standard for Substation facilities

(Source: JICA Survey Team)

Voltage (kV)	Conductor Type	Number of Conductor per Phase	Transmission Line Thermal Capacity per Circuit (MVA)	Remarks
400	AAAC Sorbus (659mm ²)	2	1519	usual
400	11	3	2278	heavy load
	ACSR Crow (409mm ²)	1	305	rural
220	AAAC Yew (479mm ²)	1	343	rural
220	11	2	686	usual
	AAAC Sorbus (659mm ²)	2	835	heavy load

Table 12-16 The standard for Transmission line facilities

(Source: JICA Survey Team)

Particularly in the above table, since AAAC (all aluminum alloy stranded wire) is weak against breeze vibration fatigue and has a weak point that the creep amount is large, and its application to a place where the load becomes large (strong wind, icing, large difference in height, etc.), you should be aware of its application. In addition, fretting corrosion phenomenon (friction corrosion due to vibration) is known to occur, and attention must also be paid to use in coastal areas and desert areas.

Also, since AAAC is made of aluminum alloy, the power transmission loss is larger than that of pure aluminum type electric conductors. Compared to AAAC Yew which is approximately the same size as LL-ACSR 500 mm which is a low-loss conductor (Low-Loss ACSR: abbreviated as LL-ACSR) developed in Japan, the resistance of LL-ACSR is about 16.7% smaller as Table 12 17, The initial investment amount due to the high electric conductor price of LL-ACSR can be collected in

10 to 20 years at the place where tidal current is large, and it becomes economical in consideration of the life of electric conductor 40 years.

In the future, planning of transmission lines with large currents should be done, planning criteria should be determined considering power transmission loss well enough.

Table 12-17 Compare of AAAC and LL-ACSR					
		Conventional	Recent		
Description	Unit	AAAC Yew	LL-ACSR 500mm ²		
Cross sectional view	_				
Nominal diameter	mm	28.4	27.00		
AL		479	500.2		
Cross sectional area Core	mm ²		21.99		
Total		479	522.2		
Nominal weight	kg/km	1,319	1,546		
DC resisitance at 20 deg. C	ohm/km	0,069	0.05750	Ī	
Unit price	USD/km	5,000*	7,420	-	

Table 12-17 Compare of AAAC and LL-ACSR

(Source: JICA Survey Team)

		2018-'20	2021-'25	2026-'30	2031-'35	2036-'40
Establishment of Organization to Formulate PDPM	MINEA RNT PRODEL ENDE	Establishment o IPDP	of			
Revision of PDPM	MINEA/IPDP		▼	▼	▼	▼
 Actions to improve the accuracy of the Power Demand Forecasting Organizing and 	RNT ENDE	Design & introduction of S	CADA		lation and analysis of data	
accumulating information			Enhancement of	f customer hearing system; Co	ontinuation of hearings	
 Revision of study on occupancy hydropower potential 			•	•	•	•
Formulation of mid-term plan	RNT PRODEL ENDE		Re	view of the mid-term plan ye	ar by year	
Design of electricity tariff structure	IRSEA	Tariff structur design	e until the start of liberalization at the latest			
Institution design for IPP entry ➤ Concession system, PPA system, etc.	IRSEA	Institution desi for IPP entry	gn until the start of liberalization at the latest			
Renovation of load dispatching organization ➤ Reform of load dispatching offices ➤ Introduction of SCADA	RNT PRODEL	Reform of I dispatching of Introductio	fices			

Table 12-18Schedule for Action Plan on PDMP

Chapter 13 Technology Transfer & Capacity Building

The survey covers technology transfer activities related to the formulation of the Power Development Master Plan. The plans formed during the work implementation planning called for technology transfer through workshops and OJT. Later, for the following reasons, we narrowed down the approach to workshops alone. Approval from the Angola side' has been obtained for this approach.

- ➤ The personnel involved in the planning of the power sector are widely distributed within MINEA, RNT, PRODEL, ENDE, and IRSEA, making it difficult to grasp the target counterparts to whom the technology should be transferred. It will therefore be more efficient to invite the target counterparts to workshops than to visit and cooperate with them through OJT.
- ➤ The Survey Team works out of an office located at some distance from the office of the counterpart, making OJT physically impossible.
- > MINEA wants as many personnel as possible to master the skills.

13.1 Workshop

The workshops shown in the table below were held over the course of four missions. PDPAT, a demand and supply operation simulation software package, was introduced on the Angola Side.

		Table 13-1 Workshop Curriculum
Mission	Date	Curriculum
1 st Mission	18-Jul	TEPCO's Power Development History
	25-Jul	Power Demand Forecasts
		+Methodology of Power Demand Forecasts
		Generation Development Plan
		+Supply reliability criteria
2 nd Mission	28-Sep	Generation Development Plan
		+Screening Method
	29-Sep	Transmission Development Plan
		+Fundamental Concepts of power system planning in TEPCO
	4-Oct	Generation Development Plan
		+Annual Expenditure
		Transmission Development Plan
		+Power Flow Analysis
	5-Oct	Generation Development Plan
		+Dispatching game
	6-Oct	Transmission Development Plan
		+Outline of Transmission Line Design & Cost Estimation
3 rd Mission	12-Jan	Financial & Economical Analysis
		+Basic item of Financial & Economical Analysis
		Generation Development Plan
		+How to operate PDPAT
	18-Jan,	Generation Development Plan
		+Configuration of data for GDP (1)
	25-Jan,	Power Demand Forecast
		+Confirming accomplishment
		Transmission Development Plan
		+Proceeding with formulation work
		+Clarifying matters entailed in the formulation of the TDP
		Generation Development Plan

 Table 13-1
 Workshop Curriculum

	+Configuring data for GDP (2)
31-Jan	Environmental & Social Considerations
	+SEA
	General
	+Perspective of the Final Power Development Master Plan
Final Mission	Procedure to formulate the Power Development Master Plan

13.2 Training in Japan

Angola side counterparts were invited to Japan for training to deepen their understanding of the status of Japan's power system operations (including operation at the central dispatching office) for stable power supply, the influence of renewable energy power supplies on the power system, and advanced technologies possessed by Japanese companies (high-efficiency thermal power generation, etc.).

13.2.1 Participants

Ten counterparts were invited to the training in Japan. The participants were affiliated with MINEA (including GAMEK), PRODEL, RNT, ENDE, and IRSEA.

		T 11 40 0		
		Table 13-2	Participants List	
	Name	Entity	Department	Position
Mr.	Osvaldo Marcos Julião	MINEA	National Directorate of	Engineer
	Gonçalves		Electrical Energy	
Mr.	Ernesto Milton Pereira da	PRODEL	Hydraulic Production	Director
	Costa		Directorate	
Mr.	Cláudio Morais Marques	PRODEL	Statistic and Planning	Senior Engineer
				C C
Mr.	Eudes Panzo	RNT	Power System Planning	Head of
				Department
Mr.	Leonardo Tshama	RNT	Power System Planning	Engineer
Mr.	Délcio Fonseca	RNT	Power System Planning	Engineer
Mr.	Caterça Calumbo da	ENDE	Maintenance Protection	Engineer
	Costa			C
Mr.	Kuatel Xeku Conceição	ENDE	Operation Division	Chief of Division
			-	Operation
Mr.	Negidio Francisco Neto	GAMEK	Technical Department	Engineer
	da Silva Buakela			Ũ
Mr.	Adérito Pedro Manico	IRSEA	Technical Supervision and	Head of
			Quality of Electricity Service	Department

13.2.2 Activity Records

The inspection site was chosen mainly from the following viewpoints.

- > To understand the system operation status of the Japanese power utilities and the training policies of the operators
- > To visit two plants: first, the mega solar power plant, to grasp the influence of renewable energy on the grid; second, the pumped storage power plant in charge of regulating the stability of the power system
- ➤ To grasp the state-of-the-art coal-fired thermal power generation technology and CCGT technology in Japan
- > To understand the interconnection of power system technologies between companies

The details of the training program are summarized in the table below.

Date Time			Table I.	3-3 Activity Record of Training in J Program	Site	
Dale				Frogram	Site	
27-Nov-17		~	22:45	Arrival in Japan		
28-Nov-17	13:00	~	14:30	Courtesy call to JICA	JICA Ichigaya office	
	14:30	~	15:30	Kick off		
29-Nov-17	9:00	~	10:00	Role of electric power company's central load dispatching office	TEPCO PG Central Load Dispatching Office	
	12:30	~	14:00	Inspection of load dispatching operator training	TEPCO PG Training Center	
	15:00	~	16:00	Inspection of Tokyo Electric's mega solar	TEPCO Renewable Power Company Ukishima Solar Power Plant	
30-Nov-17	11:00	~	12:00	Confirmation of state-of-the-art coal fired power, IGCC construction status	TEPCO FP Hirono Thermal Power Plant	
	14:00	~	15:00	Inspection of 500 kV switchgear	TEPCO PG Shin-Iwaki S/S	
1-Dec-17	9:00	~		Inspection of small and medium type CCGT plant	Mitsubishi Hitachi Power Systems Hitachi Works	
		~	12:00	Inspection of Hitachi Mitsubishi Hydropower related technology	Hitachi MitsubishiHydro Corporation Hitachi Works	
2-Dec-17				Experience of Japanese culture		
3-Dec-17				ditto		
4-Dec-17	10:00	~	11:30	Inspection of More Advanced CCGT	TEPCO FP Kawasaki Therimal Power Plant	
	13:00	~	15:00	Inspection of Toshiba's latest power related technology	Toshiba Energy Systems & Solutions Corporation Keihin Product Operations	
5-Dec-17	13:30	~	16:30	Inspection of the state-of-the-art Large Gas Combined Cycle Manufacturing Factory	Mitsubishi Hitachi Power Systems Takasago Works	
6-Dec-17				Experience of Japanese culture		
7-Dec-17	10:30	~	12:30	Inspection of pumped storage power plant with high head	TEPCO RPC Kannagawa Pumped Storage Power Plant	
	15:30	~	16:30	Inspection of frequency converter substation	TEPCO PG Shin-Shinano Frequency Converter Station	
8-Dec-17	15:00	~	16:30	Ministry of Economy, Trade and Industry	METI; Agency for Natural Resources and Energy	
	17:00	~	18:30	Wrap-up	JICA Ichigaya office	
9-Dec-17	22:00	~		Departure to Angola		

Table 13-3 Activity Record of Training in Japan

Date: 2017 Nov. 28 / Kick-off meeting (in JICA Ichigaya office)

Date: 2017 Dec. 1 / Mitsubishi Hitachi Power Systems, Hitachi Mitsubishi Hydro Corporation Hitachi Works

Date: 2017 Dec. 4 / TEPCO FP Kawasaki Thermal Power Plant

Date: 2017 Dec. 4 / Toshiba Energy Systems & Solutions Corporation Keihin Product Operations

Date: 2017 Dec. 5 / Mitsubishi Hitachi Power Systems Takasago Works

Date: 2017 Dec. 7 / TEPCO RPC Kannagawa Pumped Storage Power Plant

Date: 2017 Dec. 8 / Ministry of Economy, Trade and Industry; Agency for Natural Resources and Energy

Date: 2017 Dec. 8 / Wrap-up meeting (in JICA Ichigaya office)

13.3 Additional Training in Japan

There was a plan to invite relevant parties of Angolan power industry to Japan for training so that they would have deeper understanding of Japan's power system operations for stable power supply (including operations at a Central Load Dispatching Center), impacts of renewable energy power supplies on electric power systems, and Japanese companies' advanced technologies for high-efficiency thermal power generation, etc. As Angola's power development master plan was formulated and it was expected that additional training of higher-level officials in Japan would deepen the counterparts' understanding and the knowledge would be reflected in Angolan policies, we invited the Minister of Energy and Aqua (MINEA) and other top officials of electric power companies and other controlling government offices for training in Japan. During the training, we also held a seminar about the Angolan Power Sector to present Angola's power development master plan to Japanese companies and attract interest in investment in Angola from Japanese companies through the presence of Angolan officials.

13.3.1 Participants

There were 8 participants – 4 members from MINEA including the MINEA Minister Borges, directors and chairpersons of the power companies and organizations of ENDE, PRODEL, RNT and IRSEA.

	Name	Entity	Ministry or Company	Position
M r.	João Baptista <u>Borges</u>	MINEA	Ministry of Energy and Water Affairs	Minister
M r.	Carlos Gil Ferreira De Sousa	MINEA	Minister's Office of Energy and Water Affairs	Director
M r.	Osvaldo Marcos Julião Gonçalves	MINEA	Ministry of Energy and Water Affairs, National Directorate of Electric Energy	Director
M r.	Ruth Cardoso De Almeida Safeca	ENDE	National Electricity Distribution Company	Chairman of Board of Directors
M r.	José Antônio Neto	PRODE L	Public Electricity Production Company	Chairman of Board of Directors
M r.	Rui Pereira Do Amaral Gourgel	RNT	National Electricity Transportation Company	Chairman of Board of Directors
M r.	Luís Mourão Da Silva	IRESA	Regulatory Institute of Electricity and Water Services	Chairman of Board of Directors
M r.	Benevildes Cabral Marcelino	MINEA	Minister's Office of Energy and Water Affairs	Head of Public Relations and Protocol Section

 Table 13-1
 Angolan Participants

13.3.2 Activity Results

The participants learned Japan's state-of-the art technologies mainly through the attendance at the Angolan Power Sector Seminar, which was the major purpose of the training, and the activity contributed to the future technical cooperation for Angola.

The sites for visits were selected mainly from the following viewpoints.

 \succ Understanding of the power system operations of the Japanese power companies and understanding of the operator training policies

> Understanding of Japan's technologies for state-of-the-art coal-fired power generation and gas-combined cycle power generation

> Understanding of Japan's latest technologies used for gas insulated transformers/switchgears installed at unmanned underground substations

The training program and contents are as shown in Table 13-5.

Table 13-2 Additional Training Activities in Japan						
Date		Time		Program Contents	Destination	
2018/12/8 (Sat.)		~	22:45	Arrive in Japan	Haneda Airport	
2018/12/9 (Sun)		All day	,	Briefings by the Embassy of Angola in Japan	Embassy of Angola in Japan	
	10:00	~	11:30	Explanation of the itinerary, explanation of MP and potential Japanese collaborators	JICA Headquarters	
	11:30	~	12:30	Courtesy visit to JICA executives	JICA Headquarters	
	14:00	~	14:15	Courtesy visit to President of TEPCO Power Grid	Headquarters of Tokyo Electric Power Company Holdings	
2018/12/10 (Mon)	14:15	~	14:30	Overview of major electric power companies in Japan	Central Load Dispatching Center of TEPCO Power Grid	
	14:30	~	15:15	Explanation of roles of load dispatching centers of Japanese electric power companies	Central Load Dispatching Center of TEPCO Power Grid	
	15:30	~	17:00	Visit to a state-of-the-art underground substation in Japan	Higashi Uchisaiwai-cho Substation of TEPCO Power Grid	
2018/12/11 (Tue)	10:00	~	12:00	Seminar for Japanese companies & FR Transfer Ceremony	JICA Ichigaya Building	
	14:00	~	16:00	Visit to a combined cycle gas turbine (CCGT) power station	Kawasaki Thermal Power Plant of TEPCO Fuel & Power	
2018/12/12 (Wed)	9:45	~		Leave Japan (Minister and others for London)	Haneda Airport	
	22:00	~		Leave Japan (Director and others for Angola)	Narita Airport	

Table 13-2 Additional Training Activities in Japan

Report on the training results and materials used have already been submitted to JICA.

Date: 2018 Dec. 10 / Kick-off meeting (in JICA Head Quarter)

Date: 2018 Dec. 10 / TEPCO PG Central Load Dispatching Center

